# Institute of Computer Science of CAS Modeling rivulets and other thin film flows



### Martin Isoz



Department of mathematics

17. 2. 2015

UCT Praque

| Introduction |  |  |  |  |
|--------------|--|--|--|--|
|              |  |  |  |  |
|              |  |  |  |  |

# 1 Introduction

- Why to study rivulet interface
- General problem description

# Why to study rivulets

Introduction

Numerous applications in mass transfer and reaction engineering



[Sulzer ChemTech]

### Hydrodynamics

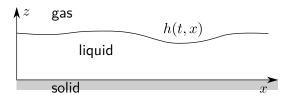
- Fuel cells
  - water management inside PEMFC fuel cells
- Aerospace engineering
  - in flight formation of rivulets on plane wings

### Gas-liquid interface

- Packed columns
  - wetting performance
  - mass transfer coefficients
- Catalytic reactors
  - wetting of the catalyst

# General problem description

Thin film flow on solid substrate[1]



#### Scales

- Thickness, H
- General lengthscale, L

• 
$$\varepsilon = H/L \ll 1$$

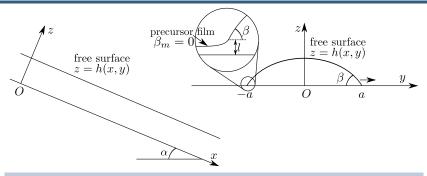
### Flow

Introduction

- Predominantly in direction of one of the longer dimensions
- Driven by external forces (gravity, surface tension gradients...)
- Modeled via macroscopic momentum equation (Navier-Stokes)

# Used coordinate system

Cartesian coordinate system and basic notations



### **Notations**

Introduction

 $a \dots$  half-width of the rivulet, [m]  $h \dots$  height, [m]  $l \dots$  intermediate region length scale, [m] x,y,z .... coordinate system, [m]

 $\alpha$  ..... plate inclination angle, [°]

 $\beta$  ..... dynamic contact angle, [°]

### Navier-Stokes equations

Introduction

Macroscopic momentum balance for incompressible liquid

$$\rho \frac{\mathrm{D}\,\mathbf{u}}{\mathrm{D}\,t} = -\nabla p + \mu \nabla^2 \mathbf{u} + \rho \mathbf{F}$$

### Legend and notations

| $(t, \mathbf{x}) = (t, x, y, z) \dots$ coordinates       | $\rho$ liquid density                             |
|----------------------------------------------------------|---------------------------------------------------|
| $\mathbf{u} = (u, v, w) \dots$ liquid velocity           | $\mu$ liquid dynamic viscosity                    |
| <i>p</i> pressure                                        | F external forces                                 |
|                                                          |                                                   |
| D u                                                      |                                                   |
| $rac{\mathrm{D}\mathbf{u}}{\mathrm{D}t} = \mathbf{u}_t$ | $\mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u}$ |

| Thin Film I |  |  |  |  |
|-------------|--|--|--|--|
|             |  |  |  |  |



- Main Idea
- Reduced Navier-Stokes equations
- Nondimensionalization
- Leading terms analysis
- Boundary conditions

Thin liquid layer moving in one direction subject to external forces

### Simplifications

Thin Film I ●○○○○

- Newtonian liquid,  $\rho$ ,  $\mu$  and  $\gamma$  are constant
- Gravity is the only acting body force.
- No shear at gas-liquid interface.
- Laminar flow.

- Perform dimension analysis.
- Neglect as many of terms in Navier-Stokes equation as possible.
- Integrate NS equation partially to obtain a scalar PDE.

Thin liquid layer moving in one direction subject to external forces

### Simplifications

Thin Film I ●○○○○

- Newtonian liquid,  $\rho$ ,  $\mu$  and  $\gamma$  are constant
- Gravity is the only acting body force.
- No shear at gas-liquid interface.
- Laminar flow.

- Perform dimension analysis.
- Neglect as many of terms in Navier-Stokes equation as possible.
- Integrate NS equation partially to obtain a scalar PDE.

Thin liquid layer moving in one direction subject to external forces

### Simplifications

Thin Film I ●○○○○

- Newtonian liquid,  $\rho$ ,  $\mu$  and  $\gamma$  are constant
- Gravity is the only acting body force.
- No shear at gas-liquid interface.
- Laminar flow.

- Perform dimension analysis.
- Neglect as many of terms in Navier-Stokes equation as possible.
- Integrate NS equation partially to obtain a scalar PDE.

Thin liquid layer moving in one direction subject to external forces

### Simplifications

Thin Film I

- Newtonian liquid,  $\rho$ ,  $\mu$  and  $\gamma$  are constant
- Gravity is the only acting body force.
- No shear at gas-liquid interface.
- Laminar flow.

- Perform dimension analysis.
- Neglect as many of terms in Navier-Stokes equation as possible.
- Integrate NS equation partially to obtain a scalar PDE.

Thin liquid layer moving in one direction subject to external forces

### Simplifications

Thin Film I

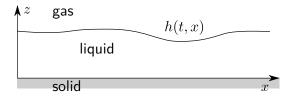
- Newtonian liquid,  $\rho$ ,  $\mu$  and  $\gamma$  are constant
- Gravity is the only acting body force.
- No shear at gas-liquid interface.
- Laminar flow.

- Perform dimension analysis.
- Neglect as many of terms in Navier-Stokes equation as possible.
- Integrate NS equation partially to obtain a scalar PDE.

**Reduction of Navier-Stokes equations** 

Case of 1D thin film flow on horizontal substrate

Thin Film I



$$\rho \frac{\mathrm{D}\,\mathbf{u}}{\mathrm{D}\,t} = -\nabla p + \mu \nabla^2 \mathbf{u} + \rho \mathbf{F}$$

$$\rho(u_t + uu_x + wu_z) = -p_x + \mu (u_{xx} + u_{zz}) \rho(w_t + uw_x + ww_z) = -p_z + \mu (w_{xx} + w_{zz}) + g$$

# Dimensionless formulation

Thin Film I

$$\bar{x} = \frac{x}{L}, \quad \bar{z} = \frac{z}{\varepsilon L}, \quad \bar{u} = \frac{u}{U}, \quad \bar{w} = \frac{w}{\varepsilon U}, \quad \bar{p} = \frac{\varepsilon^2 L}{\mu U^2} p, \quad \varepsilon = \frac{H}{L}$$

$$\frac{U^2}{L} \left( \bar{u}_t + \bar{u}\bar{u}_x + \bar{w}\bar{u}_z \right) = \frac{\mu U}{\varepsilon^2 \rho L^2} \left( -\bar{p}_x + \varepsilon^2 \bar{u}_{xx} + \bar{u}_{zz} \right)$$
$$\varepsilon \frac{U^2}{L} \left( \bar{w}_t + \bar{u}\bar{w}_x + \bar{w}\bar{w}_z \right) = \frac{\mu U}{\varepsilon^3 \rho L^2} \left( -\bar{p}_z + \varepsilon^4 \bar{w}_{xx} + \varepsilon^2 \bar{w}_{zz} \right) + g$$

Reynolds number - ratio of inertial to viscous forces

$$\operatorname{Re} = \frac{\rho L U}{\mu}$$

### Leading term analysis Neglect less significant terms

Thin Film I

$$\begin{aligned} \varepsilon^2 \operatorname{Re}\left(\bar{u}_t + \bar{u}\bar{u}_x + \bar{w}\bar{u}_z\right) &= -\bar{p}_x + \varepsilon^2 \bar{u}_{xx} + \bar{u}_{zz} \\ \varepsilon^4 \operatorname{Re}\left(\bar{w}_t + \bar{u}\bar{w}_x + \bar{w}\bar{w}_z\right) &= -\bar{p}_z + \varepsilon^4 \bar{w}_{xx} + \varepsilon^2 \bar{w}_{zz} + g_z \end{aligned}$$

#### Thin film and laminar flow

$$\varepsilon \ll 1,$$
  $\varepsilon^2 \operatorname{Re} = \varepsilon^2 \frac{\rho L U}{\mu} \ll 1$ 

Simplified NS equations in dimensional form

$$p_x = \mu u_{zz}$$
$$p_z = \rho g$$

### Boundary conditions

Thin Film I

No slip, no shear stress, pressure jump at the (g) - (l) interface and kinetic condition

Dirichlet and Neumann's conditions

- No slip at the (l) (s) interface, u(0) = w(0) = 0.
- No shear at the free surface,  $u_z(h) = 0$ .

Pressure jump at free boundary

$$p(h) = p_A - \gamma \kappa$$

Kinematic boundary condition

$$F(t, x) = h(t, x) - z = 0$$
$$\frac{\mathrm{D}F}{\mathrm{D}t} = 0 \iff h_t + uh_x = w$$

Continuity equation – mass balance

$$u_x + w_z = 0 \iff w(h) - w(0) = w(h) = \int_0^h u_x \mathrm{d} z$$

|--|--|--|--|--|--|--|--|--|--|--|

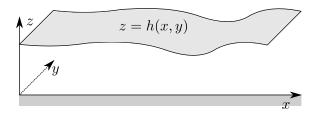
# **3** Surfaces

- Monge parametrization
- Mean surface curvature

# Monge parametrization

Surfaces

Natural surface parametrization for thin liquid films[2]



### Surface definition

$$\mathbf{r} = (x, y, h(x, y)) \iff F(x, y, z) = z - h(x, y) = 0$$

Tangent plane and outer unit normal (smooth surfaces)

$$\mathbf{r} \cdot \mathbf{n} = 0, \quad \mathbf{n} = \frac{\mathbf{r}_x \times \mathbf{r}_y}{\|\mathbf{r}_x \times \mathbf{r}_y\|} = \left. \frac{\nabla F}{\|\nabla F\|} \right|_{z=h(x,y)}$$
(1)

# Introduction Thin Film I Surfaces Thin Film II Spreading Uniform rivulet Spreading rivulet Experiment Conclusions

| Curvature         |                                                              |
|-------------------|--------------------------------------------------------------|
| Linear object:    | Change in tangent along the arc length of the curve.         |
| Curve on surface: | Change in ${f n}$ with movement on the surface.              |
|                   | $\mathrm{d}\mathbf{n} = \mathrm{d}\mathbf{r}\cdot\mathbf{Q}$ |

### Curvature tensor (elements from differentiation of (1))

$$Q_{ij} = \frac{1}{\Gamma} \left( F_{ij} - \frac{F_i \Gamma_j}{\Gamma} \right)$$
$$\Gamma = \|\nabla F\|, \quad F_i = \frac{\partial F}{\partial r_i}, \quad \Gamma_i = \frac{\partial \|\nabla F\|}{\partial r_i}, \quad \mathbf{r} = (x, y, z)$$

### Curvature tensor invariants

Surfaces

Invariants of Q do not change with rotation of coordinate system[2, 3]

Matrix  $3 \times 3$ , Q, invariants under similarity transformations

- Mean curvature,  $\kappa = \operatorname{Tr} Q/2$
- Gaussian curvature,  $K = M_{11} + M_{22} + M_{33}$
- $\det Q = 0$

### Mean curvature

$$\kappa = \frac{1}{2\Gamma^3} \left[ F_{xx}(F_y^2 + F_z^2) - 2F_x F_y F_{xy} + \text{Perm} \right]$$
(2)  
Perm :  $(x, y, z) \to (z, x, y), \quad (x, y, z) \to (y, z, x)$ 

### Simplification of (2) via Monge parametrization

$$F = z - h(x, y), \quad \Gamma = \|\nabla F\| = \sqrt{F_x^2 + F_y^2 + F_z^2}$$
$$\kappa = \frac{(1 + h_x^2)h_{yy} + (1 + h_y^2)h_{xx} - 2h_x h_y h_{xy}}{2(1 + h_x^2 + h_y^2)^{\frac{3}{2}}}$$

# 4 Thin Film II

- Remainder
- Partial integration
- Comments on the result

### Where we were left

Simplified Navier-Stokes equations and boundary conditions

Thin Film II

### Navier-Stokes equations

$$p_x = \mu u_{zz} \tag{3}$$

$$p_z = \rho g \tag{4}$$

. .

### Boundary conditions

$$u(0) = w(0) = 0$$
(5)

$$u_z(h) = 0 \tag{6}$$

$$p(h) = p_A - \gamma \kappa \tag{7}$$

$$h_t + uh_x = w \tag{8}$$

$$w(h) = \int_0^h u_x \mathrm{d}\,z \tag{9}$$

### Goal

Partially integrate equations (3) and (4) to obtain single PDE.

# Partial integration I

Obtaining the velocity profile

$$\int_{z}^{h} p_{z} dz = \int_{z}^{h} \rho g dz \rightsquigarrow p(h) - p(z) = \rho g(h - z)$$
$$p(z) = p_{A} + \rho g(z - h) - \gamma \kappa$$
(10)

### Substitution from (10) into (3) and integration

Thin Film II

$$p_x = -\rho g h_x + \gamma \kappa_x = \mu u_{zz}$$
$$\int_z^h p_x dz = \mu \int_z^h u_{zz} dz$$
$$p_x h - p_x z = \mu \left( u_z(h) - u_z(x) \right)$$
(11)

### Introduction of no-shear condition (6) and integration of (11)

$$p_x hz - p_x \frac{z^2}{2} = -\mu \int_0^z u_z dz = -\mu \left( u(z) - u(0) \right) = -\mu u(z)$$
 (12)

# Partial integration II

Deriving single PDE for h(t, x)

Combination of kinematic BC (8) and mass balance (9)

$$h_t + uh_x = -\int_0^h u_x \mathrm{d}z \tag{13}$$

Velocity field and its derivation with respect to x

Thin Film II

$$u(z) = \frac{1}{\mu} \left( p_x \frac{z^2}{2} - p_x hz \right)$$
$$u_x(z) = \frac{1}{\mu} \left( p_{xx} \frac{z^2}{2} - p_{xx} hz - p_x h_x z \right)$$

Substitution for u(z) and  $u_x(z)$  to (13) and integration

$$h_{t} + \frac{1}{\mu} \left( p_{x} \frac{z^{2}}{2} - p_{x} hz \right) h_{x} = -\int_{0}^{h} \frac{1}{\mu} \left( p_{xx} \frac{z^{2}}{2} - p_{xx} hz - p_{x} h_{x}z \right) dz$$
$$h_{t} - \frac{1}{3\mu} \frac{\partial}{\partial x} \left( p_{x} h^{3} \right) = h_{t} - \frac{1}{3\mu} \frac{\partial}{\partial x} \left[ h^{3} \left( \rho g h_{x} - \gamma \kappa_{x} \right) \right] = 0$$
(14)

# Comments on the result

**Derived equation** 

$$h_t - \frac{1}{3\mu} \frac{\partial}{\partial x} \left[ h^3 \left( \rho g h_x - \gamma \kappa_x \right) \right] = 0$$

### Case of nearly flat surface with neglectable effects of gravity

• Nearly flat surface,  $h_x \ll 1 \rightsquigarrow \kappa_x \sim h_{xxx}$ 

Thin Film II

• Neglectable gravity,  $\rho g \sim 0$ 

Simplified equation

$$h_t + \frac{\gamma}{3\mu} \frac{\partial}{\partial x} \left( h^3 h_{xxx} \right) = 0$$

|  |  | Spreading |  |  |
|--|--|-----------|--|--|
|  |  |           |  |  |

# 5 Spreading

- Hamlet
- Coping with Huh and Scriven paradox
- Cox-Voinov law
- To do

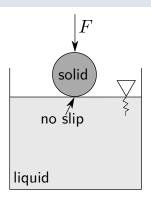
# Something is rotten in the state of Denmark

Spreading

Liquid spreading and no slip boundary condition

Derived equation – assumption of no slip at z = 0

$$h_t - \frac{1}{3\mu} \frac{\partial}{\partial x} \left[ h^3 \left( \rho g h_x - \gamma \kappa_x \right) \right] = 0 \iff u(0) = w(0) = 0$$



Huh and Scriven paradox[4] Even Heracles could not sink a

solid.

$$\mathbf{u}(0) = 0 \iff F \to \infty$$

# Coping with Huh and Scriven paradox Slip or no slip – that is the question[6]

Navier slip

Spreading

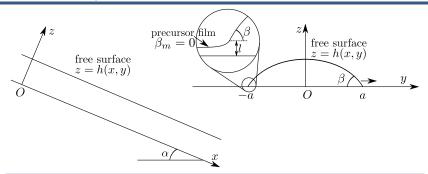
### **Disjoining pressure**

Introduction of new pressure term reflecting the long range molecular forces

$$\begin{cases} \\ h_t - \frac{1}{3\mu} \frac{\partial}{\partial x} \left[ h^3 \left( \rho g h_x - \gamma \kappa_x - \phi_x \right) \right] = 0 \end{cases}$$

### Used coordinate system

Cartesian coordinate system and basic notations

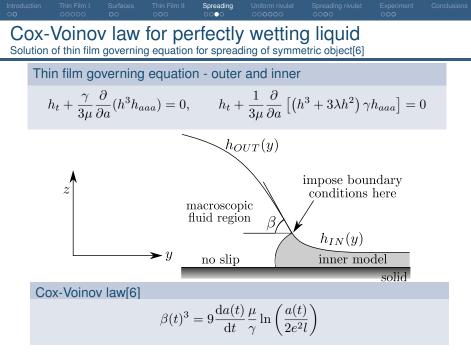


Spreading

### **Notations**

| <i>a</i> half-width of the rivulet, [m]    |
|--------------------------------------------|
| <i>h</i> height, [m]                       |
| <i>l</i> intermediate region length scale, |
| [m]                                        |

- x, y, z ...... coordinate system, [m]
- $\alpha$  ...... plate inclination angle, [°]
- $\beta$  .....dynamic contact angle, [°]



# What do we want to achieve

Description of spreading rivulet flow

### Uniform (non spreading) rivulet flow

- Same principle of description as for thin film.
- Two-dimensional problem.
- Analytical solution of Navier-Stokes equations is available for simplified cases.

Spreading

### Spreading rivulet

- Three-dimensional problem.
- Problem of gas-liquid interface shape evolution.
- There is no analytical solution available.

### Plan

Use available description of uniform rivulet to deal with spreading one.

ntroduction

Im I Surfa

Thin Film II

Uniform rivulet

Spreading riv

kperiment C

# 6 Uniform rivulet

- NS equations
- Notes on integration
- Case (ii)
- Case (i)
- Case (iii)
- Comparison of profiles

### Simplified Navier-Stokes equations

Assumption of very shallow and nearly flat rivulet

### Simplified NS

$$0 = -p_x + \rho g \sin \alpha + \mu u_{zz} \tag{15}$$

Uniform rivulet

$$0 = -p_y \tag{16}$$

$$0 = -p_z - \rho g \cos \alpha \tag{17}$$

### Used boundary conditions

$$\begin{aligned} z &= 0: \quad u = u(y, z) = 0 \\ z &= h: \quad p = p_A - \gamma h'' \quad \text{and} \quad u_z = 0 \\ y &= \pm a: \quad h = 0 \quad \text{and} \quad h' = \pm \tan \beta \end{aligned}$$

#### Notes

$$h = h(y), \quad h' = \frac{\mathrm{d} h}{\mathrm{d} y}, \quad p = p(y, z)$$

### **Integration of Navier-Stokes equations** In the presented case, there exist a solution for $\alpha \in (-\pi, \pi)$

### Express everything as a function of h(y)

- Use no-slip, pressure jump and no shear stress boundary conditions.
- Reduce the problem to one, third order, ODE for uknown function h(y).

Uniform rivulet

• Solve this ODE for boundary conditions specifying rivulet edges.

### Notation

As it will be shown, the problem will decompose to three cases which will be denoted:

- (i)  $\iff \alpha \in (0, \pi/2)$
- (ii)  $\iff \alpha = \pi/2$
- (iii)  $\iff \alpha \in (\pi/2, \pi)$

# Case (ii) I

Vertical plate, no effect of gravity on gas-liquid interface shape

### Navier-Stokes equations

$$0 = \rho g + \mu u_{zz} \tag{18}$$

Uniform rivulet

$$0 = -p_y \tag{19}$$

$$0 = -p_z \tag{20}$$

### Velocity field – from (18)

$$\int_{z}^{h} u_{zz} dz = -\frac{\rho g}{\mu} \int_{z}^{h} dz \quad \left| z = h : u_{z} = 0 \right|$$
$$\int_{0}^{z} u_{z} dz = \frac{\rho g}{\mu} \int_{0}^{z} (h - z) dz \quad \left| z = 0 : u = 0 \right|$$
$$u(y, z) = \frac{\rho g}{2\mu} (2hz - z^{2})$$

# Case (ii) II

Vertical plate, no effect of gravity on gas-liquid interface shape

### Pressure field – from (20)

$$\int_{z}^{h} p_{z} dz = \int_{z}^{h} 0 dz \quad \left| z = h : p = p_{A} - \gamma h'' \right|$$
$$p(y, z) = p_{A} - \gamma h''$$
$$(19) \rightsquigarrow p_{y} = -\gamma h''' = 0$$

Uniform rivulet

### Gas-liquid interface shape - from (19)

$$\gamma h^{\prime\prime\prime} = 0 \rightsquigarrow h(y) = C_1 y^2 + C_2 y + C_3$$
$$y = \pm a : h = 0, \quad h' = \pm \tan \beta$$
$$h(\zeta) = \frac{a}{2} (1 - \zeta^2) \tan \beta \quad \left| \begin{array}{c} \zeta = \frac{y}{a} \end{array} \right|$$

#### Case (ii) III

Vertical plate, no effect of gravity on gas-liquid interface shape

#### Volumetric flow rate, Q

$$Q = \int_{-a}^{a} \int_{0}^{h(y)} u(y, z) \,\mathrm{d}z \,\mathrm{d}y$$

Uniform rivulet

#### **Results overview**

$$p(z) = p_A + \frac{\gamma}{a} \tan \beta$$
$$h(y) = \frac{\tan \beta}{2a} (a^2 - y^2)$$
$$a(Q) = \left(\frac{105\mu Q}{4\rho g \tan \beta}\right)^{1/4}$$

# Case (i) I Inclined plate, rivulet on top of it

Gas-liquid interface shape – from (16)

$$\gamma h''' - \frac{\rho g \cos \alpha}{\gamma} h' = 0 \quad \left| B = a \sqrt{\frac{\rho g |\cos \alpha|}{\gamma}} \right|$$
$$h(\zeta) = C_1 + C_2 e^{B\zeta} + C_3 e^{-B\zeta} \quad \left| \zeta = \frac{y}{a} \right|$$

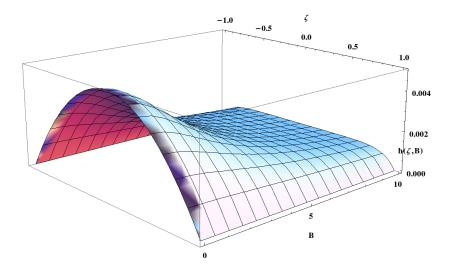
Uniform rivulet

#### Application of boundary conditions

$$y = \pm a : h = 0$$
$$y = \pm a : h' = \mp \tan \beta$$
$$h(\zeta) = \frac{a \tan \beta}{B} \left( \frac{\cosh B - \cosh B\zeta}{\sinh B} \right)$$

Uniform rivulet 000000 Case (i) II





# Introduction Thin Film I Surfaces Thin Film II Spreading Uniform rivulet Spreading rivulet Experiment Cor co co co co co co co co Case (iii) I Inclined plate, rivulet underneath it

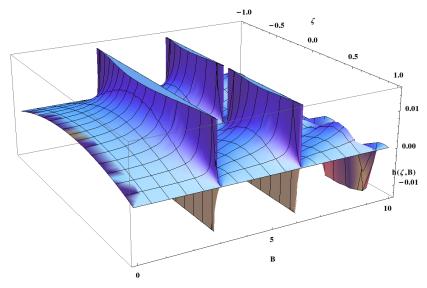
#### Gas-liquid interface shape – from (16)

$$\gamma h''' + \frac{\rho g \cos \alpha}{\gamma} h' = 0 \quad \left| B = a \sqrt{\frac{\rho g |\cos \alpha|}{\gamma}} \right|$$
$$h(\zeta) = C_1 + C_2 \sin B\zeta + C_3 \cos -B\zeta \quad \left| \zeta = \frac{y}{a} \right|$$

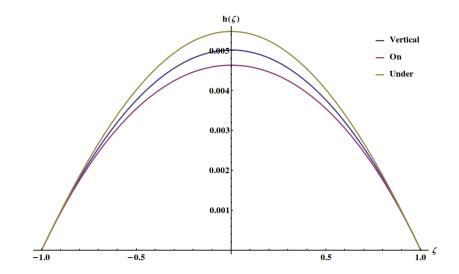
#### Application of boundary conditions

$$y = \pm a : h = 0$$
$$y = \pm a : h' = \mp \tan \beta$$
$$h(\zeta) = \frac{a \tan \beta}{B} \left( \frac{\cos B\zeta - \cos B}{\sin B} \right)$$

# Introduction Thin Film I Surfaces Thin Film II Spreading Uniform rivulet Spreading rivulet Experiment Conclusion coco = coco =



### **Comparison of uniform rivulet profiles** $B = 1, a = \beta = 0.1$ , plate inclination angle is included in B



Uniform rivulet

duction Thin Fil

Surfaces 00 m II Sprea

Uniform rivulet

Spreading rivulet

let Experime 000 Conclusions

# **7** Spreading rivulet

- Assumptions
- Basic principle
- Gas-liquid interface shape
- Calculation algorithm

### Symplifying assumptions

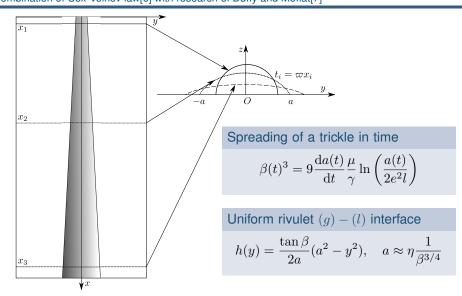
Reduce problem to one spatial and one time coordinate

- Newtonian liquid,  $\rho,\,\mu$  and  $\gamma$  are constant
- $h_t(t, x, y) = 0$ , Q is constant
- $\mathbf{u} = (u, v, w), \, u \gg v \sim w$
- $z = h : u_x = v_y = 0$
- Gravity is the only acting body force.
- Gravity effects on (g) (l) interface shape can be neglected and  $\beta = \beta(x) \ll 1.$

Spreading rivulet

• There is a thin precursor film of height l on the whole studied surface. Thus there is no contact angle hysteresis and  $\beta_m = 0$ . The height of the precursor film, l, can also be taken as the intermediate region length scale well separating the inner and outer solution for the profile shape[6].

#### 



### Spreading of flowing rivulet in time

Substituting for  $a(t) = \eta/\beta(t)^{3/4}$  into Cox-Voinov law and solving arising ODE

First order ODE with separable variables

$$\beta^{19/4} = -A \frac{\mathrm{d}\beta}{\mathrm{d}t} \ln \left(\frac{B}{\beta^{3/4}}\right), \quad \beta = \beta(t), \quad A = \frac{27}{4} \frac{\eta \mu}{\gamma}, \quad B = \frac{\eta}{2e^2 l}$$

Implicit dependence of rivulet (g) - (l) interface shape on time

$$t - \frac{4}{15} \frac{A}{\beta^{15/4}} \left[ \ln\left(\frac{B}{\beta^{3/4}}\right) - \frac{1}{5} \right] + C = 0$$
 (21)

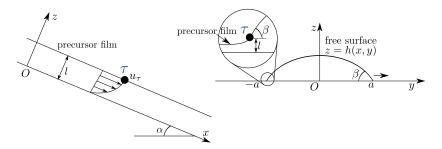
Spreading rivulet

Introduction of initial condition,  $\beta(0) = \beta_0$ 

$$C = \frac{4}{15} \frac{A}{\beta_0^{15/4}} \left[ \ln\left(\frac{B}{\beta_0^{3/4}}\right) - \frac{1}{5} \right]$$

### Transformation from t to x

Presence of falling thin liquid film, l, on whole plate



Spreading rivulet

From t to x using  $u_{\tau}$ 

$$u_{\tau} = \frac{\rho g \sin \alpha}{2\mu} l^2 \implies t = \frac{2\mu}{\rho g l^2 \sin \alpha} x = \varpi x$$

#### Spreading of flowing rivulet along the plate Substituting for *t* into the equation (21)

Implicit dependence of rivulet (g) - (l) interface shape on x

$$x - \frac{\bar{A}}{\beta^{15/4}} \left[ \ln\left(\frac{B}{\beta^{3/4}}\right) - \frac{1}{5} \right] + \bar{C} = 0$$

$$\bar{A} = \frac{4}{15} \frac{A}{\varpi} \qquad \bar{C} = \frac{4}{15} \frac{C}{\varpi}$$
(22)

Spreading rivulet

#### Notes on the equation (22)

- The obtained profiles will be all of the shape of circle segments.
- The problem of finding the shape of the rivulet's interface was reduced to specifying the right intermediate region length scale, *l*.

#### Spreading of flowing rivulet along the plate Substituting for *t* into the equation (21)

Implicit dependence of rivulet (g) - (l) interface shape on x

$$x - \frac{\bar{A}}{\beta^{15/4}} \left[ \ln \left( \frac{B}{\beta^{3/4}} \right) - \frac{1}{5} \right] + \bar{C} = 0$$

$$\bar{A} = \frac{4}{15} \frac{A}{\varpi} \qquad \bar{C} = \frac{4}{15} \frac{C}{\varpi}$$
(22)

Spreading rivulet

#### Notes on the equation (22)

- The obtained profiles will be all of the shape of circle segments.
- The problem of finding the shape of the rivulet's interface was reduced to specifying the right intermediate region length scale, *l*.

### Derived method for $S_{g-l}$ calculation

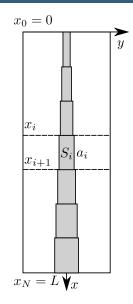
Equation (22) defines the shape of rivulet interface in implicit dependence of x

#### Proposed algorithm:

- Discretize domain in x to N subdomains
- For all subdomains solve (22) with  $x = x_i$  and obtain  $\beta_i$ , i = 1, 2, ..., N
- From  $\beta_i$  calculate shape of each (g) (l) interface,  $h_i(x, y)$
- Evaluate integral

$$S_{g-l} = \int_0^L \int_{-a(x)}^{a(x)} \sqrt{1 + \left(\frac{\partial h(x,y)}{\partial y}\right)^2} \, \mathrm{d}y \, \mathrm{d}x$$

and obtain  $S_{g-l}$ 



Spreading rivulet

|  |  |  | Experiment |  |
|--|--|--|------------|--|
|  |  |  |            |  |

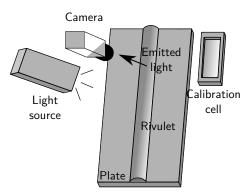
# 8 Experiment

- Measurements principle
- Data Evaluation
- Data comparison

# Measurements principle and data origin

#### Measurements principle – LIF[8, 9]

- Illumination of marked liquid by monochromatic light
- Measurements of emitted light intensities
- Conversion of measured light intensities in local film thicknesses

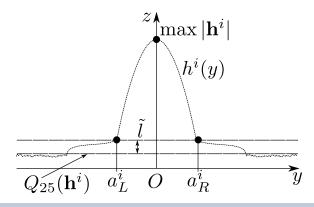


Experiment

#### Output of measurements

Image of (g) - (l) interface in a form of grayscale photography



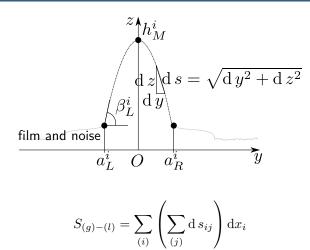


**Rivulet edges identification** 

$$a_L^i \iff \text{first value of } \mathbf{h}^i < Q_{25}(\mathbf{h}^i) + \tilde{l} \text{ left from } \max |\mathbf{h}^i|$$

#### Studied parameters evaluation

Pixel-wise calculation of  $S_{q-l}$  and of other rivulet type flow characteristics



#### **Rivulet parameters**

Experiment

• 
$$S_{g-l}$$

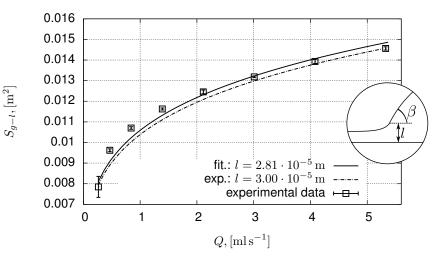
- $(a_L^i + a_R^i), h_M^i$
- $\beta_L^i, \, \beta_R^i$

• 
$$\langle u \rangle_i$$
,  $\operatorname{Re}^i_a$ ,  $\operatorname{Re}^i_{l_a}$ 

# Number of observations

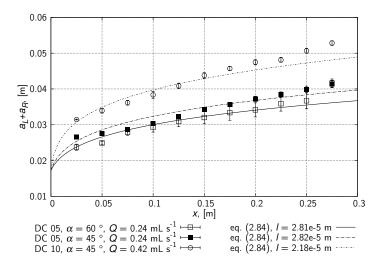
- All available transversal cuts for S<sub>g-l</sub>
- 5 10 cuts for the rest

Comparison of calculated and measured  $S_{g-l}$ Silicon oil spreading on steel,  $\alpha = 60^{\circ}$ 



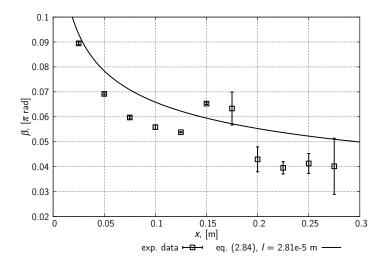
Experiment

Comparison of calculated and measured 2a DC 05 a DC 10, various  $\alpha$ 



Experiment

Comparison of calculated and measured  $\beta$  DC 05,  $\alpha = 45\,^{\circ}, Q = 4.90 \cdot 10^{-6}\,\mathrm{m^3\,s^{-1}}$ 



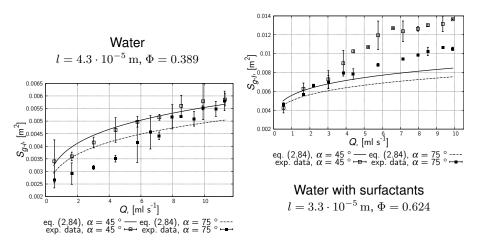
Experiment

|  |  |  |  |  | Conclusions |
|--|--|--|--|--|-------------|
|  |  |  |  |  |             |

## **9** Conclusions

# Introduction Thin Film I Surfaces Thin Film II Spreading Uniform rivulet Spreading rivulet Experiment Conclusions

Dry plate, gravity, transitions from dry to wetted plate, waves?, applications?



#### Outlook

Dry plate, gravity, transitions from dry to wetted plate, waves?, applications?

#### Dry plate

- Formation of precursor film  $\implies \beta_m \neq 0$
- Surface tension acts against spreading

#### Gravity

• With gravity effects, shape of 2D (g) - (l) interface is not an arc

Conclusions

New term in thin liquid film governing equation

#### Transitions

- Critical presursor film height, l\*
- l > l\* : wetted plate
- *l* < *l*<sup>∗</sup> : dry plate

|       |  |  |  | Conclusions |
|-------|--|--|--|-------------|
| rence |  |  |  |             |

- O'Brien, S. B. G. Schwartz, L. W. *Encyclopedia of Surface and Colloid Science*, Theory and Modeling of Thin Film Flows, 1st ed.; Marcel Dekker, Inc: New York, 2002.
- [2] Safran, S. A. Curvature elasticity of thin films, Adv. in. Phys. 1999, 48 (4), 395-448.
- [3] Shifrin, T. *DIFFERENTIAL GEOMETRY: A First Course in Curves and Surfaces*, Prelim. ed.; University of Georgia: Tbilisi, 2010.
- [4] Huh, C. Scriven, L. E. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Col. Int. Sci. 1971, 35 (11), 85–101.
- [5] Davis, S. H. Moving contact lines and rivulet instabilities. Part 1. The static rivulet, J. Fluid. Mech. 1980, 98, 225–242.
- [6] Bonn, D. Eggers, J. Indekeu, J. Meunier, J. Rolley, E. Wetting and Spreading. *Rev. Mod. Phys.* 2009, *81*, 739–805.
- [7] Duffy, B. R. Moffat, H. K. Flow of a viscous trickle on a slowly varying incline, *Chem. Eng. J.*, **1995**, *60*, 141–146.

|       |  |  |  | Conclusions |
|-------|--|--|--|-------------|
| rence |  |  |  |             |

- [8] S. V. Alekseenko, V. A. Antipin, A. V. Bobylev, D. M. Markovich: Application of PIV to velocity measurements in a liquid film flowing down an inclined cylinder, *Exp. Fluids*, **2008**, *43*, 197–207.
- [9] Hagemeier, T. Hartmann, M. Kühle, M. Thévenin, D. Zähringer, K. Experimental characterization of thin films, droplets and rivulets using LED fluorescence, *Exp. in Fluids*, **2011**, *52*, 361–374.
- [10] Isoz, M.: Computationally inexpensive method to determine size of gas-liquid interfacial area of rivulet spreading on inclined wetted plate, Proceedings of conference *Topical Problems of Fluid Mechanics 2014*, Prague (2014) pp. 59–62.
- [11] Isoz, M.: Simplified model for a rivulet spreading down an inclined wetted plate, Proceedings of conference 4<sup>th</sup> Scientific Colloquium 2014, Prague (2014) pp. 102–116.
- [12] Isoz, M.: Using VOF opensource code for rivulet type flow modeling, Proceedings of conference *Seminar on Numerical Analysis 2015*, Ostrava (2015) pp. 45–48.
- [13] Isoz, M.: Spreading rivulet with decrease in flow rate induced by dissipation in underlying wetting film, Proceedings of conference *Topical Problems of Fluid Mechanics 2015*, Prague (2015) pp. 77–80.

| References III<br>In order of appearance |  |  |  |  | Conclusions |
|------------------------------------------|--|--|--|--|-------------|
|                                          |  |  |  |  |             |

- [14] Sullivan, J. M. Wilson, S. K. Duffy, B. R.: A thin rivulet of perfectly wetting fluid subject to a longitudinal surface shear stress, *Q. J. Mech. Appl. Math*, vol. 61: (2008) pp. 25–61.
- [15] Wilson, S. K. Sullivan, J. M. Duffy, B. R.: The energetics of the breakup of a sheet and of a rivulet on a vertical substrate in the presence of a uniform surface shear stress, *J. Fluid Mech.*, vol. 674 (2011) pp. 281–306.
- [16] Paterson, C. Wilson, S. K. Duffy, B. R.: Pinning, de-pinning and re-pinning of a slowly varying rivulet, *Eur. J. Mech. B/Fluids*, vol. 41 (2013) pp. 94–108.

Surfaces 1

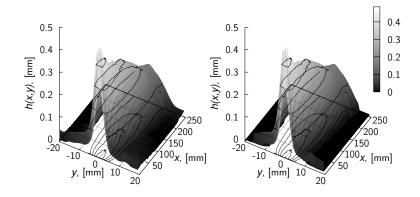
ilm II Spre

Uniform rivulet

Spreading riv. 00**0**0 let Experime 000 Conclusions

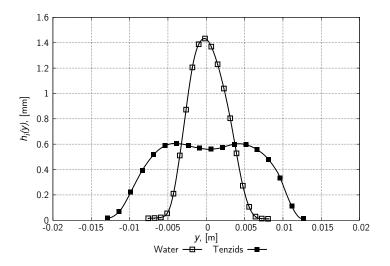
# Thank you for your attention

Accuracy of rivulet distinction DC 10,  $\alpha = 75^{\circ}$ ,  $Q = 0.18 \cdot 10^{-6} \text{ m}^3 \text{ s}^{-1}$ 



Conclusions

Influence of surfactants on liquids  $\alpha = 45^{\circ}$ , 15 cm from the plate top,  $Q = 5.77 \cdot 10^{-6} \text{ m}^3 \text{s}^{-1}$ 



Conclusions

Measured and simulated rivulet (g) - (l) interface DC 10,  $\alpha = 52^{\circ}$ ,  $Q = 0.42 \cdot 10^{-6} \text{ m}^3 \text{ s}^{-1}$ 

Conclusions

