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1 Introduction
– Why to study rivulet interface

– General problem description
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Why to study rivulets
Numerous applications in mass transfer and reaction engineering

[Sulzer ChemTech]

Hydrodynamics

• Fuel cells
– water management inside

PEMFC fuel cells

• Aerospace engineering
– in flight formation of rivulets on

plane wings

Gas-liquid interface

• Packed columns
– wetting performance
– mass transfer coefficients

• Catalytic reactors
– wetting of the catalyst

Martin Isoz – UCT Prague
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General problem description
Thin film flow on solid substrate[1]

solid

liquid

gas Scales

• Thickness, H
• General

lengthscale, L
• ε = H/L� 1

Flow

• Predominantly in direction of one of the longer dimensions
• Driven by external forces (gravity, surface tension gradients...)
• Modeled via macroscopic momentum equation (Navier-Stokes)

Martin Isoz – UCT Prague
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Used coordinate system
Cartesian coordinate system and basic notations

Notations

a . . . . half-width of the rivulet, [m]
h . . . . . . . . . . . . . . . . . . . . . height, [m]
l . . . . . . intermediate region length
scale, [m]

x, y, z . . . . coordinate system, [m]

α . . . . . . plate inclination angle, [◦]
β . . . . . dynamic contact angle, [◦]

Martin Isoz – UCT Prague



Introduction Thin Film I Surfaces Thin Film II Spreading Uniform rivulet Spreading rivulet Experiment Conclusions

Navier-Stokes equations
Macroscopic momentum balance for incompressible liquid

ρ
Du

D t
= −∇p+ µ∇2u + ρF

Legend and notations

(t,x) = (t, x, y, z) . . . . coordinates
u = (u, v, w) . . . . . . . liquid velocity
p . . . . . . . . . . . . . . . . . . . . . . . pressure

ρ . . . . . . . . . . . . . . . . . . . liquid density
µ . . . . . . . . liquid dynamic viscosity
F . . . . . . . . . . . . . . . . . external forces

Du

D t
= ut + u · ∇u

Martin Isoz – UCT Prague
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2 Thin Film I
– Main Idea

– Reduced Navier-Stokes equations

– Nondimensionalization

– Leading terms analysis

– Boundary conditions

Martin Isoz – UCT Prague
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Main idea of thin film approximation
Thin liquid layer moving in one direction subject to external forces

Simplifications

• Newtonian liquid, ρ, µ and γ are constant
• Gravity is the only acting body force.
• No shear at gas-liquid interface.
• Laminar flow.

General approach

• Perform dimension analysis.
• Neglect as many of terms in Navier-Stokes equation as possible.
• Integrate NS equation partially to obtain a scalar PDE.

Martin Isoz – UCT Prague
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Reduction of Navier-Stokes equations
Case of 1D thin film flow on horizontal substrate

solid

liquid

gas

ρ
Du

D t
= −∇p+ µ∇2u + ρF

 

ρ(ut + uux + wuz) = −px + µ (uxx + uzz)

ρ(wt + uwx + wwz) = −pz + µ (wxx + wzz) + g

Martin Isoz – UCT Prague
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Dimensionless formulation
Introduction of scales for the problem

x̄ =
x

L
, z̄ =

z

εL
, ū =

u

U
, w̄ =

w

εU
, p̄ =

ε2L

µU2
p, ε =

H

L 

U2

L
(ūt + ūūx + w̄ūz) =

µU

ε2ρL2

(
−p̄x + ε2ūxx + ūzz

)
ε
U2

L
(w̄t + ūw̄x + w̄w̄z) =

µU

ε3ρL2

(
−p̄z + ε4w̄xx + ε2w̄zz

)
+ g

Reynolds number – ratio of inertial to viscous forces

Re =
ρLU

µ

Martin Isoz – UCT Prague
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Leading term analysis
Neglect less significant terms

ε2Re (ūt + ūūx + w̄ūz) = −p̄x + ε2ūxx + ūzz

ε4Re (w̄t + ūw̄x + w̄w̄z) = −p̄z + ε4w̄xx + ε2w̄zz + g,

Thin film and laminar flow

ε� 1, ε2Re = ε2
ρLU

µ
� 1

Simplified NS equations in dimensional form

px = µuzz

pz = ρg

Martin Isoz – UCT Prague
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Boundary conditions
No slip, no shear stress, pressure jump at the (g)− (l) interface and kinetic condition

Dirichlet and Neumann’s conditions

• No slip at the (l)− (s) interface, u(0) = w(0) = 0.
• No shear at the free surface, uz(h) = 0.

Pressure jump at free boundary

p(h) = pA − γκ

Kinematic boundary condition

F (t, x) = h(t, x)− z = 0

DF

D t
= 0 ⇐⇒ ht + uhx = w

Continuity equation – mass balance

ux + wz = 0 ⇐⇒ w(h)− w(0) = w(h) =

∫ h

0

uxd z

Martin Isoz – UCT Prague
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3 Surfaces
– Monge parametrization

– Mean surface curvature

Martin Isoz – UCT Prague
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Monge parametrization
Natural surface parametrization for thin liquid films[2]

Surface definition

r = (x, y, h(x, y)) ⇐⇒ F (x, y, z) = z − h(x, y) = 0

Tangent plane and outer unit normal (smooth surfaces)

r · n = 0, n =
rx × ry
‖rx × ry‖

=
∇F
‖∇F‖

∣∣∣∣
z=h(x,y)

(1)

Martin Isoz – UCT Prague
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Curvature tensor
Expressing the surface curvature

Curvature

Linear object: Change in tangent along the arc length of
the curve.

Curve on surface: Change in n with movement on
the surface.

dn = dr ·Q

Curvature tensor (elements from differentiation of (1))

Qij =
1

Γ

(
Fij −

FiΓj
Γ

)
Γ = ‖∇F‖, Fi =

∂F

∂ri
, Γi =

∂‖∇F‖
∂ri

, r = (x, y, z)

Martin Isoz – UCT Prague
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Curvature tensor invariants
Invariants of Q do not change with rotation of coordinate system[2, 3]

Matrix 3× 3, Q, invariants under similarity transformations

• Mean curvature, κ = TrQ/2

• Gaussian curvature, K = M11 +M22 +M33

• detQ = 0

Mean curvature

κ =
1

2Γ3

[
Fxx(F 2

y + F 2
z )− 2FxFyFxy + Perm

]
(2)

Perm : (x, y, z)→ (z, x, y), (x, y, z)→ (y, z, x)

Simplification of (2) via Monge parametrization

F = z − h(x, y), Γ = ‖∇F‖ =
√
F 2
x + F 2

y + F 2
z

κ =
(1 + h2x)hyy + (1 + h2y)hxx − 2hxhyhxy

2(1 + h2x + h2y)
3
2

Martin Isoz – UCT Prague
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4 Thin Film II
– Remainder

– Partial integration

– Comments on the result

Martin Isoz – UCT Prague
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Where we were left
Simplified Navier-Stokes equations and boundary conditions

Navier-Stokes equations

px = µuzz (3)
pz = ρg (4)

Boundary conditions

u(0) = w(0) = 0 (5)
uz(h) = 0 (6)

p(h) = pA − γκ (7)
ht + uhx = w (8)

w(h) =

∫ h

0

uxd z (9)

Goal

Partially integrate equations (3) and (4) to obtain single PDE.

Martin Isoz – UCT Prague
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Partial integration I
Obtaining the velocity profile

Integration of (4) and usage of BC (7)∫ h

z

pzdz =

∫ h

z

ρgdz  p(h)− p(z) = ρg(h− z)

p(z) = pA + ρg(z − h)− γκ (10)

Substitution from (10) into (3) and integration

px = −ρghx + γκx = µuzz∫ h

z

pxdz = µ

∫ h

z

uzzdz

pxh− pxz = µ (uz(h)− uz(x)) (11)

Introduction of no-shear condition (6) and integration of (11)

pxhz − px
z2

2
= −µ

∫ z

0

uzdz = −µ (u(z)− u(0)) = −µu(z) (12)

Martin Isoz – UCT Prague
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Partial integration II
Deriving single PDE for h(t, x)

Combination of kinematic BC (8) and mass balance (9)

ht + uhx = −
∫ h

0

uxdz (13)

Velocity field and its derivation with respect to x

u(z) =
1

µ

(
px
z2

2
− pxhz

)
ux(z) =

1

µ

(
pxx

z2

2
− pxxhz − pxhxz

)
Substitution for u(z) and ux(z) to (13) and integration

ht +
1

µ

(
px
z2

2
− pxhz

)
hx=−

∫ h

0

1

µ

(
pxx

z2

2
− pxxhz − pxhxz

)
dz

ht −
1

3µ

∂

∂x

(
pxh

3
)

= ht −
1

3µ

∂

∂x

[
h3 (ρghx − γκx)

]
= 0 (14)

Martin Isoz – UCT Prague
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Comments on the result
Further possible simplifications

Derived equation

ht −
1

3µ

∂

∂x

[
h3 (ρghx − γκx)

]
= 0

Case of nearly flat surface with neglectable effects of gravity

• Nearly flat surface, hx � 1 κx ∼ hxxx
• Neglectable gravity, ρg ∼ 0

Simplified equation

ht +
γ

3µ

∂

∂x

(
h3hxxx

)
= 0

Martin Isoz – UCT Prague
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5 Spreading
– Hamlet

– Coping with Huh and Scriven paradox

– Cox-Voinov law

– To do

Martin Isoz – UCT Prague
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Something is rotten in the state of Denmark
Liquid spreading and no slip boundary condition

Derived equation – assumption of no slip at z = 0

ht −
1

3µ

∂

∂x

[
h3 (ρghx − γκx)

]
= 0 ⇐⇒ u(0) = w(0) = 0

liquid

solid

no slip

Huh and Scriven paradox[4]
Even Heracles could not sink a
solid.

u(0) = 0 ⇐⇒ F →∞

Martin Isoz – UCT Prague
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Coping with Huh and Scriven paradox
Slip or no slip – that is the question[6]

Navier slip

z = 0, u− λ ∂
∂z

u = 0 

ht −
1

3µ

∂

∂x

[(
h3 + 3λh2

)
(ρghx − γκx)

]
= 0

Disjoining pressure

Introduction of new pressure term reflecting the long range molecular
forces  

ht −
1

3µ

∂

∂x

[
h3 (ρghx − γκx − φx)

]
= 0

Martin Isoz – UCT Prague
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Used coordinate system
Cartesian coordinate system and basic notations

Notations

a . . . . . . . . half-width of the rivulet, [m]
h . . . . . . . . . . . . . . . . . . . . . . . . height, [m]
l . . . intermediate region length scale,
[m]

x, y, z . . . . . . . .coordinate system, [m]

α . . . . . . . . . plate inclination angle, [◦]
β . . . . . . . . . dynamic contact angle, [◦]
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Cox-Voinov law for perfectly wetting liquid
Solution of thin film governing equation for spreading of symmetric object[6]

Thin film governing equation - outer and inner

ht +
γ

3µ

∂

∂a
(h3haaa) = 0, ht +

1

3µ

∂

∂a

[(
h3 + 3λh2

)
γhaaa

]
= 0

Cox-Voinov law[6]

β(t)3 = 9
da(t)

dt

µ

γ
ln

(
a(t)

2e2l

)
Martin Isoz – UCT Prague
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What do we want to achieve
Description of spreading rivulet flow

Uniform (non spreading) rivulet flow

• Same principle of description as for thin film.
• Two-dimensional problem.
• Analytical solution of Navier-Stokes equations is available for

simplified cases.

Spreading rivulet

• Three-dimensional problem.
• Problem of gas-liquid interface shape evolution.
• There is no analytical solution available.

Plan

Use available description of uniform rivulet to deal with spreading one.

Martin Isoz – UCT Prague
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6 Uniform rivulet
– NS equations

– Notes on integration

– Case (ii)

– Case (i)

– Case (iii)

– Comparison of profiles

Martin Isoz – UCT Prague
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Simplified Navier-Stokes equations
Assumption of very shallow and nearly flat rivulet

Simplified NS

0 = −px + ρg sinα+ µuzz (15)
0 = −py (16)
0 = −pz − ρg cosα (17)

Used boundary conditions

z = 0 : u = u(y, z) = 0
z = h : p = pA − γh′′ and uz = 0
y = ± a : h = 0 and h′ = ± tanβ

Notes

h = h(y), h′ =
dh

d y
, p = p(y, z)

Martin Isoz – UCT Prague
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Integration of Navier-Stokes equations
In the presented case, there exist a solution for α ∈ (−π, π)

Express everything as a function of h(y)

• Use no-slip, pressure jump and no shear stress boundary
conditions.

• Reduce the problem to one, third order, ODE for uknown function
h(y).

• Solve this ODE for boundary conditions specifying rivulet edges.

Notation

As it will be shown, the problem will decompose to three cases which
will be denoted:
• (i) ⇐⇒ α ∈ (0, π/2)

• (ii) ⇐⇒ α = π/2

• (iii) ⇐⇒ α ∈ (π/2, π)

Martin Isoz – UCT Prague
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Case (ii) I
Vertical plate, no effect of gravity on gas-liquid interface shape

Navier-Stokes equations

0 = ρg + µuzz (18)
0 = −py (19)
0 = −pz (20)

Velocity field – from (18)∫ h

z

uzz dz = −ρg
µ

∫ h

z

dz

∣∣∣∣∣ z = h : uz = 0∫ z

0

uz dz =
ρg

µ

∫ z

0

(h− z) dz

∣∣∣∣ z = 0 : u = 0

u(y, z) =
ρg

2µ
(2hz − z2)

Martin Isoz – UCT Prague
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Case (ii) II
Vertical plate, no effect of gravity on gas-liquid interface shape

Pressure field – from (20)∫ h

z

pz dz =

∫ h

z

0 dz

∣∣∣∣∣ z = h : p = pA − γh′′

p(y, z) = pA − γh′′

(19) py = −γh′′′ = 0

Gas-liquid interface shape – from (19)

γh′′′ = 0 h(y) = C1y
2 + C2y + C3

y = ± a : h = 0, h′ = ± tanβ

h(ζ) =
a

2
(1− ζ2) tanβ

∣∣∣ ζ =
y

a

Martin Isoz – UCT Prague
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Case (ii) III
Vertical plate, no effect of gravity on gas-liquid interface shape

Volumetric flow rate, Q

Q =

∫ a

−a

∫ h(y)

0

u(y, z) dz dy

Results overview

p(z) = pA +
γ

a
tanβ

h(y) =
tanβ

2a
(a2 − y2)

a(Q) =

(
105µQ

4ρg tanβ

)1/4

Martin Isoz – UCT Prague
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Case (i) I
Inclined plate, rivulet on top of it

Gas-liquid interface shape – from (16)

γh′′′ − ρg cosα

γ
h′ = 0

∣∣∣∣B = a

√
ρg| cosα|

γ

h(ζ) = C1 + C2eBζ + C3e−Bζ
∣∣ ζ =

y

a

Application of boundary conditions

y = ± a : h = 0

y = ± a : h′ = ∓ tanβ

h(ζ) =
a tanβ

B

(
coshB − coshBζ

sinhB

)

Martin Isoz – UCT Prague
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Case (i) II
Gas-liquid interface shape in dependence on Bond number, a = β = 0.1

Martin Isoz – UCT Prague



Introduction Thin Film I Surfaces Thin Film II Spreading Uniform rivulet Spreading rivulet Experiment Conclusions

Case (iii) I
Inclined plate, rivulet underneath it

Gas-liquid interface shape – from (16)

γh′′′ +
ρg cosα

γ
h′ = 0

∣∣∣∣B = a

√
ρg| cosα|

γ

h(ζ) = C1 + C2 sinBζ + C3 cos−Bζ | ζ =
y

a

Application of boundary conditions

y = ± a : h = 0

y = ± a : h′ = ∓ tanβ

h(ζ) =
a tanβ

B

(
cosBζ − cosB

sinB

)

Martin Isoz – UCT Prague
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Case (iii) II
Gas-liquid interface shape in dependence on Bond number, a = β = 0.1

Martin Isoz – UCT Prague
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Comparison of uniform rivulet profiles
B = 1, a = β = 0.1, plate inclination angle is included in B

Martin Isoz – UCT Prague
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7 Spreading rivulet
– Assumptions

– Basic principle

– Gas-liquid interface shape

– Calculation algorithm

Martin Isoz – UCT Prague



Introduction Thin Film I Surfaces Thin Film II Spreading Uniform rivulet Spreading rivulet Experiment Conclusions

Symplifying assumptions
Reduce problem to one spatial and one time coordinate

• Newtonian liquid, ρ, µ and γ are constant

• ht(t, x, y) = 0, Q is constant

• u = (u, v, w), u� v ∼ w

• z = h : ux = vy = 0

• Gravity is the only acting body force.

• Gravity effects on (g)− (l) interface shape can be neglected and
β = β(x)� 1.

• There is a thin precursor film of height l on the whole studied
surface. Thus there is no contact angle hysteresis and βm = 0.
The height of the precursor film, l, can also be taken as the
intermediate region length scale well separating the inner and
outer solution for the profile shape[6].

Martin Isoz – UCT Prague
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Basic principle
Combination of Cox-Voinov law[6] with research of Duffy and Moffat[7]

Spreading of a trickle in time

β(t)3 = 9
da(t)

dt

µ

γ
ln

(
a(t)

2e2l

)

Uniform rivulet (g)− (l) interface

h(y) =
tanβ

2a
(a2 − y2), a ≈ η 1

β3/4

Martin Isoz – UCT Prague
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Spreading of flowing rivulet in time
Substituting for a(t) = η/β(t)3/4 into Cox-Voinov law and solving arising ODE

First order ODE with separable variables

β19/4 = −Adβ

dt
ln

(
B

β3/4

)
, β = β(t), A =

27

4

ηµ

γ
, B =

η

2e2l

Implicit dependence of rivulet (g)− (l) interface shape on time

t− 4

15

A

β15/4

[
ln

(
B

β3/4

)
− 1

5

]
+ C = 0 (21)

Introduction of initial condition, β(0) = β0

C =
4

15

A

β
15/4
0

[
ln

(
B

β
3/4
0

)
− 1

5

]

Martin Isoz – UCT Prague
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Transformation from t to x
Presence of falling thin liquid film, l, on whole plate

From t to x using uτ

uτ =
ρg sinα

2µ
l2 =⇒ t =

2µ

ρgl2 sinα
x = $x

Martin Isoz – UCT Prague
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Spreading of flowing rivulet along the plate
Substituting for t into the equation (21)

Implicit dependence of rivulet (g)− (l) interface shape on x

x− Ā

β15/4

[
ln

(
B

β3/4

)
− 1

5

]
+ C̄ = 0 (22)

Ā =
4

15

A

$
C̄ =

4

15

C

$

Notes on the equation (22)

• The obtained profiles will be all of the shape of circle segments.
• The problem of finding the shape of the rivulet’s interface was

reduced to specifying the right intermediate region length scale,
l.

Martin Isoz – UCT Prague
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x− Ā

β15/4

[
ln

(
B

β3/4

)
− 1

5

]
+ C̄ = 0 (22)

Ā =
4

15

A

$
C̄ =

4

15

C

$

Notes on the equation (22)

• The obtained profiles will be all of the shape of circle segments.
• The problem of finding the shape of the rivulet’s interface was

reduced to specifying the right intermediate region length scale,
l.
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Derived method for Sg−l calculation
Equation (22) defines the shape of rivulet interface in implicit dependence of x

Proposed algorithm:

• Discretize domain in x to N subdomains
• For all subdomains solve (22) with x = xi and

obtain βi, i = 1, 2, . . . , N

• From βi calculate shape of each (g)− (l)
interface, hi(x, y)

• Evaluate integral

Sg−l =

∫ L

0

∫ a(x)

−a(x)

√
1 +

(
∂h(x, y)

∂y

)2

dy dx

and obtain Sg−l
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8 Experiment
– Measurements principle

– Data Evaluation

– Data comparison
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Measurements principle and data origin
Light Induced Fluorescence

Measurements principle – LIF[8, 9]

• Illumination of marked liquid by
monochromatic light

• Measurements of emitted light
intensities

• Conversion of measured light
intensities in local film thicknesses

Camera

Light

source
Rivulet

Plate

Calibration

cell

Emitted

light

Output of measurements

Image of (g)− (l) interface in a form of grayscale photography
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Rivulet distinction
Find rivulet edges on the plate

Rivulet edges identification

aiL ⇐⇒ first value of hi < Q25(hi) + l̃ left from max |hi|
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Studied parameters evaluation
Pixel-wise calculation of Sg−l and of other rivulet type flow characteristics

film and noise

S(g)−(l) =
∑
(i)

∑
(j)

d sij

 dxi

Rivulet parameters

• Sg−l
• (aiL + aiR), hiM
• βiL, βiR
• 〈u〉i, Reia, Reilc

Number of
observations

• All available
transversal cuts
for Sg−l

• 5 – 10 cuts for the
rest
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Comparison of calculated and measured Sg−l
Silicon oil spreading on steel, α = 60 ◦
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0.011
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0.016
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S
g
−
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[m
2
]

Q, [ml s−1]

fit.: l = 2.81 · 10−5 m
exp.: l = 3.00 · 10−5 m

experimental data
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Comparison of calculated and measured 2a
DC 05 a DC 10, various α

0.01

0.02

0.03

0.04

0.05

0.06

 0  0.05  0.1  0.15  0.2  0.25  0.3

a
L
+
a
R
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m
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x, [m]
DC 05, α = 60 °, Q = 0.24 mL s-1

DC 05, α = 45 °, Q = 0.24 mL s-1

DC 10, α = 45 °, Q = 0.42 mL s-1

eq. (2.84), l = 2.81e-5 m
eq. (2.84), l = 2.82e-5 m
eq. (2.84), l = 2.18e-5 m
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Comparison of calculated and measured β
DC 05, α = 45 ◦, Q = 4.90 · 10−6 m3 s−1
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9 Conclusions
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Outlook
Dry plate, gravity, transitions from dry to wetted plate, waves?, applications?

Water
l = 4.3 · 10−5 m, Φ = 0.389
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eq. (2.84), α = 45 °
exp. data, α = 45 °

          eq. (2.84), α = 75 °
exp. data, α = 75 °
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exp. data, α = 75 °

Water with surfactants
l = 3.3 · 10−5 m, Φ = 0.624
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Outlook
Dry plate, gravity, transitions from dry to wetted plate, waves?, applications?

Dry plate

• Formation of precursor film =⇒ βm 6= 0

• Surface tension acts against spreading

Gravity

• With gravity effects, shape of 2D (g)− (l) interface is not an arc
• New term in thin liquid film governing equation

Transitions

• Critical presursor film height, l∗

• l > l∗ : wetted plate
• l < l∗ : dry plate
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Accuracy of rivulet distinction
DC 10, α = 75 ◦, Q = 0.18 · 10−6 m3 s−1
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Influence of surfactants on liquids
α = 45◦, 15 cm from the plate top, Q = 5.77 · 10−6 m3s−1
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Measured and simulated rivulet (g)− (l) interface
DC 10, α = 52 ◦, Q = 0.42 · 10−6 m3 s−1
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