4 Scientific Colloquium

Simplified model for a rivulet spreading
down an inclined wetted plate

Uf

Martin Isoz JM
ICT Department of

Prague ICT Prague mathematics

24.-26. 6. 2014



Introduction

Outline

@) Introduction
— Why to study rivulet interface — Coordinate system
— Basic principle — Assumptions

Martin Isoz — ICT Prague



Introduction
[ ]

Why to study rivulets

Numerous applications in mass transfer and reaction engineering

Hydrodynamics

e Fuel cells
— water management inside
PEMFC fuel cells
e Aerospace engineering

— in flight formation of rivulets
on plane wings

Gas-liquid interface

e Packed columns

— wetting performance

— mass transfer coefficients
o Catalytic reactors

— wetting of the catalyst
[Sulzer ChemTech] 4
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Introduction
°

Used coordinate system

Cartesian coordinate system and basic notations

z precursor,

o = free surface

z = h(z,y)

free surface
z = h(z,y)

~a 0] a
Notations
am] ...... half-width of the rivulet =z, y, z[m] ..... coordinate system
hlm] coeviiiiiii height T
; ; : al-] ... plate inclination angle
ls[ge” intermediate region length 8] ...... dynamic contact angle
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Proposed method principle

Parallel between spreading of trickle in time and along the plate

Y

T

Duffy and Moffat[11]

Description of an uniform rivulet
flowing down an inclined plate

4

Cox-Voinov Law[24]

Description of spreading of the
s 2D symmetric object in time
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Symplifying assumptions

Reduce problem to one spatial and one time coordinate

o Newtonian liquid, p, 1 and ~ are constant
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Symplifying assumptions

Reduce problem to one spatial and one time coordinate

o Newtonian liquid, p, 1 and ~ are constant
o h(t,x,y) =0, Q is constant
e u=(u,v,w), u>vV~w
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Symplifying assumptions

Reduce problem to one spatial and one time coordinate

o Newtonian liquid, p, 1 and ~ are constant
o h(t,x,y) =0, Q is constant

e u=(u,v,w), u>vV~w

e z=h:u;=vy,=0
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Symplifying assumptions

Reduce problem to one spatial and one time coordinate

Newtonian liquid, p, 4 and ~ are constant
he(t,z,y) = 0, Q is constant
u=(u,v,w), u>>0v~w

z2=h:uz; =v,=0
Gravity is the only acting body force.
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Symplifying assumptions

Reduce problem to one spatial and one time coordinate

Newtonian liquid, p, 4 and ~ are constant
hi(t,xz,y) = 0, Q is constant
u=(u,v,w), u>>0v~w

z2=h:uz; =v,=0

Gravity is the only acting body force.

The rivulet is shallow. Its dynamic contact angles are
assumed small, f(x) < 1, and its GL interface is nearly
flat, hy(z,y) < 1.
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Symplifying assumptions

Reduce problem to one spatial and one time coordinate

e Newtonian liquid, p, © and ~ are constant

o h(t,x,y) =0, Q is constant

e u=(u,v,w), u>vV~w

e z=h:u;=vy,=0

e Gravity is the only acting body force.

e The rivulet is shallow. Its dynamic contact angles are
assumed small, f(x) < 1, and its GL interface is nearly
flat, hy(z,y) < 1.

e There is a thin precursor film of height [ on the whole
studied surface. Thus there is no contact angle hysteresis
and 3, = 0. The height of the precursor film, [, can also be
taken as the intermediate region length scale well
separating the inner and outer solution for the profile
shape[24].
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Static rivulet

Outline

(2) Static rivulet
— Gas-liquid interface — Liquid flow rate
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Simplified Navier-Stokes equations

Assumption of very shallow and nearly flat rivulet[11, 12]

Simplified NS
0 = —pz+pgsina+ pu,,
prnd —py
= —Pz—pgcosa

Used boundary conditions
z= 0: u=u(y,z)=0
z= h: p=ps—~hy, and u, =0
y==a: h=0 and hy, = Ftanp

Notes
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Legend to results of integration

In the presented case, there exist a physical solution for a € (0, )

Notation

The problem decomposes to three cases which will be denoted:
o (i) < a€(0,7/2)
o (i) <— a=m7/2
o (iti) <= a€ (n/2,m)

Dimensionless numbers

B _ g2P9cos || plkgm™3] ... liquid density
y’V AINm™] surface tension
=3 glms~2] ....gravitational acceleration

V.
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Integration results

Rectilinear rivulet gas-liquid interface shape

Gas-liquid interface shape for the three cases

(atan B [ cosh VB — cosh \/ﬁ{ (i)
VB sinh vB !
ho) = BB ¢ (i)

atanf [ cos \/EC — cos VB )
L VB sin VB

Scaling of the GL interface height

o249
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Static rivulet
[e]e]e] ]

Effects of Bond number on GL interface shape

Dependence of GL interface shape on the ratio of surface and volumetric forces

B=02 B=20
1.2 T I T 1.6 T T T
R | 12 b ]
9 0.8 + Pl N 9 0.8 | .."j:-“'—'—.—_._.—IM“';:.". i
<04 4= 04 L P R
0 1 1 1 O 1 1 1
-1 -05 0 0.5 1 -1 -05 0 0.5 1
¢ ¢
B=40 B=8.0
1.6 — 4.8 I
208 i 1S53 [ ]
o4t D S A0S ]
0 I I I 0 —atinliniit I L=
-1 -05 0 0.5 1 -1 -05 0 0.5 1
¢ ¢

Martin Isoz — ICT Prague



Static rivulet
e0

Liquid volumetric flow rate

Integration of velocity field on a domain of one transversal cut

Velocity field integration

Q 1
2

Dimensionless liquid flow rate

pQ
= F(B
a*pgsin atan® 3 (B)

541/B cosh v/B + 6v/B cosh 3v/B — 27 sinh v/B — 11 sinh 3v/B

h

—~

9 h(¢)

1
w(C,2)dzd¢ = //”gsmo‘ (©)z — 2%) dzd¢
—1 0

o

36B2 sinh® /B @
4 ..
F(B) = | -= (i)
27 sin v/B + 11 sin 3v/B — 54v/B cos v/B — 6v/B cos 3v/B G0
36B2 sin® VB
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Static rivulet
oe

Liquid flow rate scaling and properties

Maximal flow rate occurs at o« = 7/2

Scaling
105

Q= 105pgpucos’ a @
4a*pgsin atan® 8

" 42sinatan® 8 B2

0=

Asymptotic behavior
(i): lim Q(B)=0

B—oo
(733) - lim Q(B) = oo

B—n2
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Static rivulet
oe

Liquid flow rate scaling and properties

Maximal flow rate occurs at o« = 7/2
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Spreading rivulet

Outline

() Spreading rivulet
— Problem definition — Basics — Gas-liquid interface
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Spreading rivulet
[ ]

Difference from static rivulet

Changed boundary conditions

Simplified NS
0 = —pg+pgsina+ pu,,
0 = —py
0 = —p.,—pgcosc

Used boundary conditions

z= 0: u(x,y,z) +AVu=0, Akl
z= h: D =pA— VK and uy =0
y=*ta(x): h=0 and hy, = Ftanf(z)
Notes
h = h(x7y)7 hy = g_za p :p(:c,y,z)
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Spreading rivulet
[ ele}

Cox-Voinov law

Solution of thin film governing equation for spreading of symmetric object[24]

Thin film governing equation - outer and inner

Y 90 .3 10 3 2
he + ——(h°h =0 he + —— | (R° 4+ 3\R7) vh =0
t + 3” 8CL( aaa) ) t + 3M da [( + )'Y aaa]
hour(y)

impose boundary
conditions here

macroscopic
fluid region 6

hin(y)

inner model
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Basic principle remainder

Combination of Cox-Voinov law with unidirectional rivulet flow description

Y

&y

Spreading of a trickle in time

~ oda(t) p a(t)
Bt = 9= S <2e2z)

Uniform rivulet interface with
prescribed Q

tan 3
2 : h(y) = —

(a2—y2), a’anB3/4
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Spreading rivulet
ooe

Transformation from ¢ to =
Presence of falling thin liquid film, /, on all the plate

z

free surface

precursor film

z = h(z,y)
BAN\—>
—a~ 9] a Yy
From ¢ to = using u,
pgsina 2u
r=—0— " = t=—FHF—z=wz
2u pgl® sin a
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Spreading rivulet
@00

Modeling method for the case of no gravity effects
Gas-liquid interface shape defined implicitely by 1 NAE

e fxl = ain[ﬁ

7 = o0 (0 s g3, ()

1
_ _ 2Tnp _ _ 4pQ 1
b =50), B 0 b= = (105pg sin «v

B 1
n W —g
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Spreading rivulet
(o] T}

Modeling method gravity effects

1 ODE with 1 NAE nested in each time step has to be solved numerically

o t =wx,

B(0) = Bo

PQ
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Spreading rivulet
[efe] ]

B and g along the plate

€=x/L,B=75/Bo, L =01m, o =0.05 Q=0.0lmls™}, o/ = {1/3,27/3}
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Velocity field

Outline

(@) Velocity field
— In x axis direction —Iny and z directions
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Velocity in z-axis direction

Approximated through the static rivulet description

Dimensional u(x)

sin «
u(x) = pgT (2h(z,y)z — 2%)

Scaling
_ T - ¥y  s__Z
=T STLa0r 2T R0
o U
O
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Velocity field
oe

Contours plot of velocity in z-axis direction
Water, £ = z/L, 3= /B0, L = 0.1m, By = 0.05, Q = 0.0l mls™*, o = 7/3

£=0.2
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Contours plot of velocity in z-axis direction
Water, £ = z/L, 3= /B0, L = 0.1m, By = 0.05, Q = 0.0l mls™*, o = 7/3

£€=0.8
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Velocity field
[ le]

Simulation of velocity field in transversal cut

Numerical PIV based technique — connect the dots

For each subrivulet:

e Get the current width of the rivulet, ¢;, from the Cox-Voinov
law.

e Calculate the current maximal rivulet height, ho from
description of an uniform rivulet.

 Create a mesh Q! on a domain Q;,

QZ={<<,2>:<6< G E<h(O]}
= {7 : F e 6| <hil¢)]

j=1,...,M1; k=1,...,Ms

e Save the current mesh, Q.

From the saved meshes, QF i=1,...,N, evaluate the velocity
field in the { — h plane (connect the dots).
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>

Simulated velocity field v and w components

0.1m, 8o =0.05,Q =0.0lmls ™, o =7/3

B/Bo, L =

Water, ¢ = z/L, B8

£=0.2

15 2 25 3
¢

0 05 1
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Conclusions

Conclusions

Simple yet accurate enough method to determine size of (g) — () interface of rivulet

Practical advantages of proposed algorithm
e Suitable for parallelization

e Usable for qualitative study of dependence of S,_; on
process parameters

Accuracy
e Deviation < 5% in comparison with experimental data.

Outlook
e Study of spreading on dry plate
o Study of transition states between dry and wetted plate
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