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Abstract
Rivulet type flow down an inclined plate is of great importance

in many engineering areas including packed columns design and cata-
lytic reactors modeling. Combining a simplified solution of the Navier-
Stokes equation for a rectilinear rivulet and the Cox-Voinov law for an
axisymmetric spreading of a perfectly wetting liquid, we derived a semi-
analytical model of the liquid flow in a spreading rivulet. The proposed
model was used to characterize the flow of a liquid in dependence of
the plate inclination angle, rivulet dynamic contact angle and liquid
flow rate. The presented modeling method provides an insight on the
liquid flow properties without the necessity of numerically solving the
corresponding PDEs.

1 Introduction
Flow characteristics of a gravity driven, spreading trickle of a liquid, is of
the key importance throughout many areas of chemical engineering, includ-
ing the ones concerning the mass transfer [1], trickle bed reactors [2], heat
exchangers [3] and various coating processes [4].

Eventhough the rivulet type flow can be modeled using various CFD
methods [1,5], such methods are still too complex to be used in the en-
gineering practice and too computationally demanding for the parametric
studies of the rivulet behavior.

A simplified solution to the problem of the rivulet type flow has been
studied since 1960’s. The pioneering studies by Towell and Rothfeld [6],
Allen and Biggin [7], Bentwich et al. [8] and Fedotkin et al. [9] have led
to a substantial amount of subsequent work on rectilinear rivulet flow. For
example, Benilov [10] performed a stability analysis for the rivulet flow down
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an inclined substrate and Duffy and Moffat [11] used the solution available
for the rectilinear rivulet flow to describe the flow with prescribed volume
flux and non-zero contact angle over a cylinder of large radius. For further
informations on the topic of unidirectional (rectilinear) rivulet flow, see [12–
15] and many references therein.

The problem of the physics of the contact line region of a rivulet was
first taken into account by Davis [16] and revisited from another point of
view by Shetty and Cerro [17]. However, a literature covering the topic
of modeling the flow of a spreading rivulet is still limited to various CFD
methods (e.g. [1,18,19]) or the spreading rivulet stability analysis (see [20]
and references therein).

A rather different approach from the previous studies was taken in the
presented work. We used the solution for the unidirectional flow of a slender
and shallow rivulet with prescribed volume flux and non-zero contact angle
to describe the locally unidirectional flow of a rivulet with slowly varying
both contact angle and width. To link the change in contact angle with
development of the rivulet width, we applied the Cox-Voinov law [21,22]
for the axisymmetric spreading of a perfectly wetting liquid on a horizontal
substrate in time coupled with an approximative transformation from time
to a spatial coordinate.

A method for simulation of the flow in a spreading rivulet was derived for
the case of a wetted plate inclined by an angle α ∈ (0; π) to the horizontal.

The studied problematics can be divided in two main parts: the specific-
ation of the rivulet gas-liquid (GL) interface shape and the calculation of
the velocity field in it. Furthermore, it is convenient to analyze separately
the case of a rivulet flowing on an inclined plate (α < π/2), underneath it
(α > π/2) and the special case of a vertical plate (α = π/2).

For the flow on a vertical plate or for a very shallow rivulet in which the
gravity can be neglected, the problem of finding the shape of GL interface of
the rivulet was reduced from the solution of the corresponding system of the
Navier-Stokes equations to the repeated solution of one non-linear algebraic
equation. The other cases have to be treated numerically. However, the pro-
posed algorithms are all based on a solution of a single ordinary differential
equation.

The velocity field in the spreading rivulet was obtained on a purely
numerical basis. We used a technique based on a principle of particle image
velocimetry (PIV), thoroughly described in a review [24], but with followed
”particles” created numerically.
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2 Coordinate system and simplifying assumptions
The case of a steady flow of a thin symmetric rivulet down an inclined
wetted plate was studied in the Cartesian coordinate system Oxyz with the
x axis down the line of the greatest slope, the y axis horizontal and the z
axis normal to the substrate z = 0. The used coordinate system as well as
the most important symbols are depicted in the Fig. 1.

Figure 1: Used coordinate system with the basics of rivulet spreading nota-
tion. α is the plate inclination angle, β and βm are the apparent (dynamic)
and the microscopic contact angles, a is the rivulet half width.

The proposed method for modeling of a gravity driven spreading rivu-
let flowing down an inclined wetted plate was derived under the following
simplifications,

1. The studied liquid is Newtonian, ρ, µ and γ are constant.

2. The rivulet profile shape is constant in time. Furthermore, Q is con-
stant not only in time, but also in all spatial directions.

3. There is no shear between the gas and liquid phases.

4. The liquid velocities in the directions transversal and normal to the
plate are negligible in comparison to the one in its longitudinal dir-
ection, u ≫ v ∼ w. The inertial effects can be neglected in y and z
directions.
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5. The gravity is the only acting body force.

6. The rivulet is shallow. Its dynamic contact angles are assumed small,
β(x) ≪ 1, and its GL interface is nearly flat, hy(x, y) ≪ 1.

7. There is a thin precursor film of height l on the whole studied surface.
Thus there is no contact angle hysteresis and βm = 0. The height
of the precursor film, l, can also be taken as the intermediate region
length scale well separating the inner and outer solution for the profile
shape [23].

3 Specification of the GL interface shape
With the above listed simplifying assumptions, the parallel between the
spreading of a rivulet along an inclined plate and the spreading of a static
objects in time can be found.

At first, the system of Navier-Stokes equations for an unidirectional flow,
as presented by Duffy and Moffatt [11], is solved to obtain a local description
of a spreading rivulet. Then, the Cox-Voinov law is used to describe the
evolution of the boundary conditions, and thus the rivulet gas-liquid (GL)
interface shape, along the plate.

3.1 Static rivulet

For the case of a rectilinear steady flow of a shallow rivulet, the Navier-
Stokes equations can be simplified via ’thin-film theory’ to,

0 = −px + ρg sin α + µuzz

0 = −py (1)
0 = −pz − ρg cos α

and integrated subject to the boundary conditions,

z = 0 : u = u(y, z) = 0
z = h : p = pA − γhyy and uz = 0 (2)
y = ± a : h = 0 and hy = ± tan β.

Solution of the system (1) with boundary conditions (2) yields the fol-
lowing equation describing the shape the GL interface of an uniform rivulet
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for the three cases of different plate inclination angles, α < π/2, α = π/2
and α > π/2 indicated as (i), (ii) and (iii), respectively.

h(ζ) =



a tan β√
B

(
cosh

√
B − cosh

√
Bζ

sinh
√

B

)
(i)

a tan β

2
(1 − ζ2) (ii)

a tan β√
B

(
cos

√
Bζ − cos

√
B

sin
√

B

)
(iii)

, (3)

where B is the Bond number of the problem, defined as B = a2ρg| cos α|/γ,
representing the ratio of volume and surface forces in the rivulet and ζ is
the y coordinate non-dimensionalized by the rivulet half-width, ζ = y/a.

In addition, a multiplication factor useful for non-dimensionalization of
the rivulet height arises from the case (ii) in the equation (3),

h̃(ζ) = 2h(ζ)
a tan β

(4)

Case (iii) of the solution (3) has a singularity at B = π2 and thus is only
sensible if B is restricted by 0 ≤ B ≤ π2. The singularity corresponds to
the dripping of the liquid from the plate which occurs at high B, when the
surface tension forces are not strong enough to keep the rivulet in contact
with the plate. The effects of changes in the Bond number on the GL
interface shape are depicted in the Fig. 2.

With the liquid volumetric flux taken as a fixed parameter, the rivulet
half width, a, and its apparent contact angle, β, are bonded with the relation,

Q

a
=
∫ 1

−1

∫ h(ζ)

0
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∫ 1

−1

∫ h(ζ)

0

ρg sin α

2µ

(
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)
dz dζ. (5)

After the integration, one obtains the following equation for the rivulet
contact angle and half width,

µQ

a4ρg sin α tan3 β
= F (B) (6)

and
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Figure 2: Scheme of the effects of changes in the Bond number on the rivulet
GL intarface shape. In the case (i) (. ), the interface is flattened as the
gravity effects grows stronger in comparison with the surface tension. In the
case (iii) (. ) the increase of B has the narrowing effect on the rivulet GL
interface. Case (ii) (. ) is depicted for reference. Rivulet contact angle
and semi-width are fixed at β = 0.05 and a = 0.01 m.

Again, the liquid volumetric flow rate can be non-dimensionalized using
the expression for the flow rate on a vertical plate,

Q̃ = 105µ

4a4ρg sin α tan3 β
Q = 105ρgµ cos2 α

4γ2 sin α tan3 β

Q

B2 . (8)

The dependence of the liquid dimensionless flow rate, Q̃, on the plate
inclination angle, α, is shown in the Fig. 3 (a) and the dependece of Q̃ on
the rivulet Bond number, B, in the Fig. 3 (b).

In the Fig. 3 (b), a different asymptotic behavior of the solution can
be observed for the cases of a rivulet flowing on, (i), and under, (iii), an
inclined plate,

(i) : lim
B→∞

Q̃(B) = 0

(iii) : lim
B→π2

−

Q̃(B) = ∞ (9)
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Figure 3: Dependence of the dimensionless flow rate, Q̃, on the plate inclin-
ation angle, (a), and on the Bond number, (b). In the Figure on the right
side are distinguished the three different cases, (i) for α < π/2 (. ), (ii)
for α = π/2 (. ) and (iii) for α > π/2 (. ).

Moreover, for rivulet flowing down a vertical plate or for a rivulet with
neglectable effects of the gravity on its GL interface shape, the equation (6)
can be solved analytically to obtain the following explicit relation between
a and β,

a = η
1

tan3/4 β
, η =

( 4µQ

105ρg sin α

) 1
4

. (10)

For the other cases, the equation (6) has to be solved numerically.

3.2 Spreading rivulet

In the previous section, the GL interface shape of a rectilinear steady rivulet
was studied. In this section, the obtained results are used to locally describe
the GL interface shape of a spreading rivulet. The local descriptions are
bounded together by the Cox-Voinov law to obtain an approximate shape
of the GL interface of a spreading rivulet.

The difference between a static, uniform, rivulet and the spreading one
is in the formulation of the boundary conditions (2). For a static rivulet,
β and a are constant all along the rivulet but for a spreading rivulet, these
two become functions of the problem longitudinal coordinate, x.

Hence, for being able to profit from the solution for an uniform rivulet,
it is necessary to provide a relation for the evolution of β(x) and a(x) along
the rivulet.
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In the review [23], the Cox-Voinov law for the case of a symmetric 2D
object spreading on a horizontal substrate was derived in the form,

β(t)3 = 9da(t)
dt

µ

γ
ln
(

a(t)
2e2l

)
, (11)

with a(t) being the object characteristic dimension. For the case of a narrow
axially symmetric stripe of a liquid, a(t) represents its half width.

The resulting equation is a first order ordinary differential equation for
two unknown functions, β(t) and a(t) and one free parameter, l, correspond-
ing to the intermediate region length scale (see Fig. 1 and [21–23]).

In the case of a steady rivulet of a liquid flowing and spreading down an
inclined wetted plate, the time coordinate in (11) can be transformed in the
spatial coordinate, x.

Neglectable effects of the gravity The main thought of the model-
ing of a spreading rivulet GL interface is described using the simplest case
of a vertical plate, or neglectable effects of gravity on the GL interface
shape. With an assumption of a small contact angles all along the rivulet,
β(x) ≪ 1, ∀x ∈ ⟨0; L⟩, the equation (10) can be simplified to

a
.= η

1
β3/4 . (12)

Substituting for a from (12) to (11), one arrives at

β19/4 = −A
dβ

dt
ln
(

B

β3/4

)
, β = β(t), A = 27

4
ηµ

γ
, B = η

2e2l
. (13)

Solution of (13) yields an implicit relation for β(t),

t − 4
15

A

β15/4

[
ln
(

B

β3/4

)
− 1

5

]
+ C = 0. (14)

The integration constant, C, is specified by the initial condition, β(0) = β0,

C = 4
15

A

β
15/4
0

[
ln
(

B

β
3/4
0

)
− 1

5

]
. (15)

Now, let us take the three phase point of one transversal cut through
the rivulet and denote it as τ . The equation (14) describes the movement
of τ in the direction of the y axis in time and the effects of this movement
on the shape of the 2D GL interface of the chosen transversal cut.
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For the description of the rivulet interface shape along the plate, the
relation between the movement of τ in time and the movement of the chosen
transversal cut along the plate has to be established.

The presented transformation from time to spatial coordinate arises from
the last assumption in Coordinate system and simplifying assumptions (see
page 3). We assume the presence of a precursor film of thickness equal to
the intermediate region length scale, l, on the whole plate. Neglecting the
long-range intermolecular forces, this precursor film can be taken as a free
falling film. The point τ is then considered not to be directly on the three
phase line, as there is, in fact none, but in the height l above the plate.
Hence, τ is moving along x axis with the speed of

uτ = ρg sin α

2µ
l2. (16)

Using this estimate for the speed of τ , the needed transformation is,

t = ϖx, ϖ = 2µ

ρg sin αl2
. (17)

Substitution for t from (17) to (14) yields the equation defining the
shape of the rivulet GL interface in the dependence on the plate longitudinal
coordinate, x,

x − Ā

β15/4

[
ln
(

B

β3/4

)
− 1

5

]
+ C̄ = 0, Ā = 4

15
A

ϖ
, C̄ = 4

15
C

ϖ
. (18)

With effects of the gravity If effects of the gravity on the shape of
the rivulet GL interface cannot be neglected, specification of the interface
shape becomes substantially more complicated. For the cases (i) and (iii),
the equation (6) cannot be solved analytically and we cannot substitute for
a = a(β) in (11) as the relation is defined implicitly.

In the consequence, the equation (11) has to be solved numerically in
the transformed coordinates x = t/ϖ. Moreover, the non-linear algebraic
equation (6), defining the local contact angle β = β(a(x)), has to be solved
in each iterator step.

Dimensionless coordinates and simulations All the variables except x
were non-dimensionalized using the values at x = 0. For the non-dimensionalization
of the plate longitudinal coordinate, x, the plate length, L, was used,

ξ = x

L
, ζ = y

a0
, h̃ = h

h0
0
, β̃ = β

β0
, (19)
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Figure 4: Change in the Bond number, B(ξ), and in the reduced dynamic
contact angle, β̃(ξ), along the rivulet. The three cases, (i) (. ), (ii) (. )
and (iii) (. ) are shown.

where a0 and β0 are the rivulet halw-width and dynamic contact angle at
ξ = 0 tight together by the condition of a prescribed volume flux (6) and
h0

0 is the rivulet height at ζ = ξ = 0. As the rivulet is spreading down the
plate, β̃(ξ) is decreasing and B(ξ) together with ã(ξ), are increasing as it is
shown in the Fig. 4.

For the case of the plate inclination angle, α, greater than π/2, it can be
seen, that the flow Bond number converges towards π2 as the dynamic con-
tact angle, β̃, vanishes. This corresponds to the fact, that for the case (iii),
the GL interface is pulled from the plate by the gravity and

lim
ξ→K∈R+

β̃(ξ) = 0, (20)

meaning that at some finite distance, K, from the plate top, the surface
tension and gravity forces reach an equilibrium and the spreading stops. This
also follows directly from the analysis of the driving force for the spreading
in the equation (11),

da(t)
dt

= 0 ⇐⇒ β(t) = 0. (21)

During the simulations, we considered a shallow water rivulet on a wetted
substrate. The volume flux in the rivulet was fixed at Q = 0.01 ml s−1,
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the initial dynamic contact angle at β0 = 0.05 ≪ 1 and the rivulet initial
half-width, a0, was specified by the prescribed condition of B = 1 at x = 0.
The inclined plate length, L, was taken equal to 0.1 m.

The remaining parameter of the model: the intermediate region length
scale, l, was fixed at l = 3 · 10−5 m. The selection of the value of l was based
on our previous work, [25,26], and is in the agreement with literature on the
topic (see [22,27] and references therein).

4 Velocity field
The velocity field in a steady rectilinear rivulet with unidirectional flow
of a liquid is in a form of u = u(y, z). With the assumptions listed in
Sec. 2, the velocity field can be derived analytically by solving the Navier-
Stokes equations [6,11]. The obtained solution is in the form (consult the
equation (5)),

u(ζ, z) = ρg sin α

2µ

(
2h(ζ)z − z2

)
. (22)

However, let us now consider a spreading but locally rectilinear rivulet.
The velocity field of such a rivulet consists of all the three components,
u(x) = (u(x), v(x), w(x)).

The u component of the velocity field is approximately defined, at each
discrete point of the solution of the ODE (11), by the relation (22). The
contours of the u velocity component in the water rivulet spreading down
a plate inclined by an angle α = π/3 to the horizontal are depicted int the
Fig. 6. Further informations on the selection of the simulation parameters
can be found in the paragraph Dimensionless coordinates and simulations
in the previous section. The u velocity field component was scaled using the
velocity of the GL interface at the rivulet centerline, ζ = 0, at the plate top,
ξ = 0.

As for the v and w components of the velocity field, the presented method
does not provide any approximate analytical solution. Thus, those two
velocity components have to be simulated numerically. A technique similar
to particle image velocimetry (PIV) was chosen.

PIV is an experimental technique which allows the velocity of fluid
to be simultaneously measured throughout a region illuminated by a two-
dimensional light sheet. Seeding particles are introduced into the flow and
their motion is used to estimate the kinematics of the local fluid [24].

As the performed experiments were numerical, the seeding particles were
defined artificially in a mesh-like manner. An algorithm for following the
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evolution of the v and w velocity field components is described bellow. The
whole proposed cycle has to be repeated for all N transversal cuts of the
rivulet placed at i δξ from the plate top, where i = 1, 2, . . . , N and δξ is the
time (distance) step prescribed by the solver used to treat the equation (11).

Velocity field tracking algorithm

• For each subrivulet do:

1. Get the current width of the rivulet, ζi, from solution of the
ODE (11).

2. Calculate the current maximal rivulet height, h̃0
i , from the equa-

tion (3).
3. Create a mesh on a domain Ωi,

Ωi =
{

(ζ, z̃) : ζ ∈ ⟨0; ζi⟩ | z̃ ≤ h̃i(ζ)
}

. (23)

The domain Ωi represents a right half of the rivulet at a distance
i δξ from the plate top. The left side of the rivulet can be neg-
lected as the problem is axisymmetric along the x axis. The mesh
itself is obtained by discretizing the domain Ωi equidistantly in
each coordinate by M1 and M2 points, respectively. The set of
discrete points, Ωh

i , is obtained,

Ωh
i =

{
(ζj , z̃k) : ζj ∈ ⟨0; ζi⟩

∣∣∣ z̃k ≤ h̃i(ζj)
}

j=1,...,M1; k=1,...,M2
(24)

4. Save the current mesh, Ωh
i .

• Having saved all the local meshes, Ωh
i , i = 1, . . . , N , the velocity field in

the ζ − h̃ plane between individual transversal cuts can be calculated
evaluating the change in the position of each mesh point along the
rivulet.

In the Fig. 7, there are depicted the resulting velocity fields for the
distances from the plate top ξ = 0.2 and ξ = 0.8 and the plate inclination
angle α = π/3. The slow down of the spreading can be observed as the
contact angle, β, decreases.

Another interesting observation would be the fact, that the increase in
the rivulet width is substantially quicker than the decrease in its height.
This is due to the prescribed constant liquid flow rate and the parabolic
velocity profile in the x axis direction.
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Figure 7: Comparison of the velocity fields in the ζ − h̃ plane at ξ = 0.2 and
ξ = 0.8. The case of a rivulet flowing down a plate inclined by α = π/3 to
the horizontal is depicted.

5 Conclusion
Even with the continuous growth of the computing capacity of modern com-
puters, there is still a need for simplified solutions to the complex problems
of fluid mechanics. Such method for the simulation of a rivulet spreading
down an inclined wetted plate was derived and used to study the depend-
ence of the liquid flow properties on various process parameters. Moreover,
the derived model was used to describe the spreading itself and the evolu-
tion of the flow along an inclined plate without the necessity of solving the
corresponding system of Navier-Stokes partial differential equations with a
complex boundary condition describing the behaviour of the three phase
line.

Nomenclature
a[m] . . . . . . . half-width of the rivulet
A, B, C, [s, −, −, −] . . . . . . . constants
B[−] . . . . . . . . . . . . . . . . . Bond number

e[−] . . . . . . . . . . . . . . . Euler’s constant
g[m s−2] . . gravitational acceleration
h[m] . . . . . . . . . . . . . . . . . . . . . . . . height
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l[m] intermediate region length scale
L[m] . . . . . . . . . . . total rivulet length
M1, M2[−] . . .number of meshpoints
N [−] . . . number of consecutive cuts
p[Pa] . . . . . . . . . . . . . . . . . . . . . . pressure
Q[m3 s−1] . . . . . .volumetric flow rate
S[m2] . . . . . . . . . . size of the interface
t[s] . . . . . . . . . . . . . . . . time coordinate
(u, v, w)[m s−1] . . . . . . . . velocity field
x, y, z[m] . . . . . . . . coordinate system

Greek letters
α[−] . . . . . . . . plate inclination angle

β[−] . . . . . . . . dynamic contact angle
γ[N m−1] . . . . . liquid surface tension
δ[−] . . . . . . . . . . . . . . . .small difference
η[m] . . . . . . . . constant defined in the
equation (10)
ζ, ξ[−] . . . . . . . . . . . dimensionless x, y
coordinates
µ[Pa s] . . . . . liquid dynamic viscosity
ϖ[m−1 s] transformation from t to x

ρ[kg m−3] . . . . . . . . . . . . liquid density
τ [−] . contact point for 2D interface
Ω[−] . . . . . . . . . domain of the rivulet
transversal cut
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