Proper orthogonal decomposition and discrete empirical interpolation in CFD applications

M. Isoz^{a}
${ }^{a}$ Institute of Thermomechanics, Academy of Sciences of the Czech Republic

June 17, 2017

COMPDYN 2017

Introduction

Introduction -	$\begin{aligned} & \text { POD \& DEIM } \\ & \circ \\ & \circ \\ & \circ \end{aligned}$	Link with OpenFOAM ○○○○ 0000000	Applications $\circ{ }^{\circ 000}$	Conclusions	Discussion

Research motivation

Reducing the computational cost of modeling of complex systems

Problem setting

Original system

$$
\begin{aligned}
& \dot{y}=A y+f(t, y), \quad y(t) \in \mathbb{R}^{m}, \quad y(0)=y_{0}, t \in[0, T], \\
& \text { system matrix } \ldots A \in \mathbb{R}^{m \times m}, \\
& \text { nonlinearities } \quad \ldots \quad f(t, y) \in \mathbb{R}^{m}
\end{aligned}
$$

Reduced-order system

$$
\begin{gathered}
\dot{\eta}^{\ell}=A^{\ell} \eta^{\ell}+f^{\ell}\left(t, \eta^{\ell}\right), \quad \eta^{\ell}(t) \in \mathbb{R}^{\ell}, \quad \eta^{\ell}(0)=\eta_{0}^{\ell}, t \in[0, T] \\
\text { system matrix } \quad \ldots \quad A^{\ell} \in \mathbb{R}^{\ell \times \ell} \\
\text { nonlinearities } \quad \ldots \quad f^{\ell}\left(t, \eta^{\ell}\right) \in \mathbb{R}^{\ell} \\
\text { gain } \quad \ldots \quad \ell \ll m
\end{gathered}
$$

Proper orthogonal decomposition \& Discrete empirical interpolation method

Introduction
\circ

```
POD & DEIM
O
00
```

Link with OpenFOAM
0000000
Applications
0000

Conclusions
Discussion

Reduced-Order modeling

Introduce the Galerking ansatz and Fourier modes

- Prerequisities:

$$
\begin{gathered}
\dot{y}=A y+f(t, y), \quad y(t) \in \mathbb{R}^{m}, \quad y(0)=y_{0}, t \in[0, T] \\
y(t) \in V=\operatorname{span}\left\{\psi_{j}\right\}_{j=1}^{d} \quad \forall t \in[0, T]
\end{gathered}
$$

$\Psi=\left\{\psi_{j}\right\}_{j=1}^{d} \ldots$ orthonormal basis

$$
y(t)=\sum_{j=1}^{d}\left\langle y(t), \psi_{j}\right\rangle_{W} \psi_{j}, \forall t \in[0, T], \quad W \ldots \text { appropriate weights }
$$

- Ansatz for Galerkin projection, $\ell<d$

$$
y^{\ell}(t):=\sum_{j=1}^{\ell}\left\langle y^{\ell}(t), \psi_{j}\right\rangle_{W} \psi_{j}, \forall t \in[0, T], \quad \eta_{j}^{\ell}(t):=\left\langle y^{\ell}(t), \psi_{j}\right\rangle_{W}
$$

- Put the above together, !! $\psi_{j} \in \mathbb{R}^{m}, j=1, \ldots, \ell, m>\ell$!!

$$
\begin{aligned}
\sum_{j=1}^{\ell} \dot{\eta}_{j}^{\ell} \psi_{j} & =\sum_{j=1}^{\ell} \eta_{j}^{\ell} A \psi_{j}+f\left(t, y^{\ell}(t)\right), \quad t \in(0, T) \\
y_{0} & =\sum_{j=1}^{\ell} \eta_{j}^{\ell}(0) \psi_{j}
\end{aligned}
$$

Introduce the reduced-order model

- Assume, that the above holds after projection on $V^{\ell}=\operatorname{span}\left\{\psi_{j}\right\}_{j=1}^{\ell}$, remember that $\left\langle\psi_{j}, \psi_{i}\right\rangle_{W}=\delta_{i j}$ and write,

$$
\dot{\eta}_{i}^{\ell}=\sum_{j=1}^{\ell} \eta_{j}^{\ell}\left\langle A \psi_{j}, \psi_{i}\right\rangle_{W}+\left\langle f\left(t, y^{\ell}\right), \psi_{i}\right\rangle_{W}, \quad 1 \leq i \leq l \text { and } t \in(0, T]
$$

- Define the matrix $A^{\ell}=\left(a_{i j}^{\ell}\right) \in \mathbb{R}^{l \times l}$ with $a_{i j}^{\ell}=\left\langle A \psi_{j}, \psi_{i}\right\rangle_{W}$
- Define the vector valued mapping $\eta^{\ell}=\left(\eta_{1}^{\ell}, \ldots, \eta_{l}^{\ell}\right)^{\mathrm{T}}:[0, T] \rightarrow \mathbb{R}^{\ell}$
- Define the non-linearity $f^{\ell}=\left(f_{1}^{\ell}, \ldots, f_{l}^{\ell}\right)^{\mathrm{T}}:[0, T] \rightarrow \mathbb{R}^{\ell}$, where

$$
f_{i}^{\ell}(t, \eta)=\left\langle f\left(t, \sum_{j=1}^{\ell} \eta_{j} \psi_{j}\right), \psi_{i}\right\rangle_{W}
$$

- Introduce the IC, $\eta^{\ell}(0)=\eta_{0}^{\ell}=\left(\left\langle y_{0}, \psi_{1}\right\rangle_{W}, \ldots,\left\langle y_{0}, \psi_{1}\right\rangle_{W}\right)^{\mathrm{T}}$
- Write the ROM, $\dot{\eta}^{\ell}=A^{\ell} \eta^{\ell}+f^{\ell}\left(t, \eta^{\ell}\right)$, for $t \in(0, T], \eta^{\ell}(0)=\eta_{0}^{\ell}$

Original system

$$
\dot{y}=A y+f(t, y), \quad y(t) \in \mathbb{R}^{m}, \quad y(0)=y_{0}, t \in[0, T],
$$

Solution snapshots \leftarrow Approximation obtained from FOM

$$
\boldsymbol{S}=\left\{\boldsymbol{y}_{j}=\boldsymbol{y}\left(t_{j}\right)=\mathrm{e}^{A t_{j}} \boldsymbol{y}_{0}+\int_{0}^{t_{j}} \mathrm{e}^{A\left(t_{j}-s\right)} \boldsymbol{b}(s, \boldsymbol{y}(s)) \mathrm{d} s\right\}_{j=1}^{n} \approx \tilde{\boldsymbol{S}} \leftarrow \mathrm{FOM}
$$

Matrix of snapshots (tildes denoting approximate solutions are omitted)

$$
Y=\left[\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n}\right] \in \mathbb{R}^{m \times n}, \quad \operatorname{rank}(Y)=d \leq \min \{m, n\},
$$

Goal

Approximate all the spatial coordinate vectors \boldsymbol{y}_{j} of Y simultaneously by $\ell \leq d$ normalized vectors as well as possible.
(P)

$$
\begin{aligned}
& \max _{\tilde{\boldsymbol{\psi}}_{1}, \ldots, \tilde{\boldsymbol{\psi}}_{\ell} \in \mathbb{R}^{m}} \sum_{i=1}^{\ell} \sum_{j=1}^{n}\left|\left\langle\boldsymbol{y}_{j}, \tilde{\boldsymbol{\psi}}_{i}\right\rangle_{\mathbb{R}^{m}}\right|^{2} \\
& \text { subject to } \\
&\left\langle\tilde{\boldsymbol{\psi}}_{i}, \tilde{\boldsymbol{\psi}}_{j}\right\rangle_{\mathbb{R}^{m}}=\delta_{i j} \quad \text { for } \quad 1 \leq i, j \leq \ell
\end{aligned}
$$

Where to get a suitable base $\left\{\psi_{j}\right\}_{j=1}^{d}$?

Discrete version of Proper orthogonal decomposition

Fundamental theorem of Proper orthogonal decomposition

Let Y be a given matrix of snapshots. Also, let $Y=\Psi \Sigma \Phi^{T}$ be the singular value decomposition of Y, where $\Psi=\left[\boldsymbol{\psi}_{1}, \ldots, \boldsymbol{\psi}_{m}\right] \in \mathbb{R}^{m \times m}$ and $\Phi=\left[\boldsymbol{\phi}_{1}, \ldots, \boldsymbol{\phi}_{n}\right] \in \mathbb{R}^{n \times n}$ are orthogonal matrices and the matrix Σ has the structure of

$$
\Sigma=\left[\begin{array}{cc}
\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{d}\right) & 0 \\
0 & 0
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

where $\sigma_{1}, \ldots, \sigma_{d}$ are the singular values of the matrix Y. Then, for any $\ell \in\{1, \ldots, d\}$ the solution to problem (\mathbf{P}) is given by the singular vectors $\left\{\boldsymbol{\psi}_{i}\right\}_{i=1}^{\ell}$, i.e. by the first ℓ columns of Ψ. Moreover,

$$
\operatorname{argmax}(\mathbf{P})=\sum_{i=1}^{\ell} \sigma^{2} .
$$

Proof

- Obtained via Lagrange framework
- Rather long and technical, can be found in literature (e.g. [VolkweinBook])

```
Algorithm 1 POD basis of rank \(\ell\) with weighted inner product
Require: Snapshots \(\left\{y_{j}\right\}_{j=1}^{n}\), POD rank \(\ell \leq d\), symmetric positive-definite matrix of weights
    \(W \in \mathbb{R}^{m \times m}\)
    1: Set \(Y=\left[y_{1}, \ldots, y_{n}\right] \in \mathbb{R}^{m \times n}\);
2: Determine \(\bar{Y}=W^{1 / 2} Y \in \mathbb{R}^{m \times n}\);
3: Compute SVD, \([\bar{\Psi}, \Sigma, \bar{\Phi}]=\operatorname{svd}(\bar{Y})\);
4: Set \(\sigma=\operatorname{diag}(\Sigma)\);
5: Compute \(\varepsilon(\ell)=\sum_{i=1}^{\ell} \sigma_{i} / \sum_{i=1}^{d} \sigma_{i}\);
6: Truncate \(\bar{\Psi} \leftarrow\left[\bar{\psi}_{1}, \ldots, \bar{\psi}_{l}\right] \in \mathbb{R}^{m \times \ell}\);
7: Compute \(\Psi=W^{-1 / 2} \bar{\Psi} \in \mathbb{R}^{m \times \ell}\);
8: return POD basis, \(\Psi\), and ratio \(\varepsilon(\ell)\)
```


Notes:

- All the operations on W have to be cheap, including its inversion.
- Do not perform the full SVD, $\Sigma \in \mathbb{R}^{d \times d}, d=\operatorname{rank}(\bar{Y})$.

Deal with the non-linearities I

- Identify the problem,

$$
f_{i}^{\ell}(t, \eta)=\left\langle f\left(t, \sum_{j=1}^{\ell} \eta_{j} \psi_{j}\right), \psi_{i}\right\rangle_{W} \ldots \sum_{j=1}^{\ell} \eta_{j} \psi_{j} \in \mathbb{R}^{m} \leftarrow \mathrm{FO}
$$

- Approximate the non-linearities via the POD basis, Φ,

$$
b(t):=f\left(t, \Psi \eta^{\ell}\right) \approx \sum_{k=1}^{p} \phi_{k} c_{k}(t)=\Phi c(t) \ldots \text { Galerkin ansatz }
$$

- Approximate $f^{\ell}\left(t, \eta^{\ell}\right)$ through Ψ, W, Φ,

$$
f^{\ell}\left(t, \eta^{\ell}\right)=\Psi^{\mathrm{T}} W f\left(t, \Psi \eta^{\ell}\right)=\Psi^{\mathrm{T}} W b(t) \approx \Psi^{\mathrm{T}} W \Phi c(t), \quad c(t) \in \mathbb{R}^{p}
$$

- Plug-in the last output of the DEIM algorithm, \vec{i}

$$
P:=\left[e_{\vec{i} 1}, \ldots, e_{\vec{i} p}\right] \in \mathbb{R}^{m \times p}, e_{\vec{i} k}=(0, \ldots, 0,1,0, \ldots, 0)^{\mathrm{T}} \in \mathbb{R}^{m}
$$

Deal with the non-linearities II (yes, almost done)

- Plug in the matrix P,

$$
P^{\mathrm{T}} \Phi c(t) \approx P^{\mathrm{T}} b(t), \leftarrow c(t) \in \mathbb{R}^{p}, \Phi \in \mathbb{R}^{m \times p}, b(t) \in \mathbb{R}^{m}
$$

$$
\operatorname{det}\left(P^{\mathrm{T}} \Phi\right) \neq 0 \Longrightarrow c(t) \approx\left(P^{\mathrm{T}} \Phi\right)^{-1} P^{\mathrm{T}} b(t)=\left(P^{\mathrm{T}} \Phi\right)^{-1} P^{\mathrm{T}} f\left(t, \Psi \eta^{\ell}\right)
$$

- If $f\left(t, \Psi \eta^{\ell}\right)$ is pointwise evaluable,

$$
\left(P^{\mathrm{T}} \Phi\right)^{-1} P^{\mathrm{T}} f\left(t, \Psi \eta^{\ell}\right)=\left(P^{\mathrm{T}} \Phi\right)^{-1} f\left(t, P^{\mathrm{T}} \Psi \eta^{\ell}\right), \quad P^{\mathrm{T}} \Psi \eta^{\ell} \in \mathbb{R}^{p}
$$

- Write the final ROM

$$
\dot{\eta}^{\ell}=A^{\ell} \eta^{\ell}+f^{\ell}\left(t, \eta^{\ell}\right), \text { for } t \in(0, T], \quad \eta^{\ell}(0)=\eta_{0}^{\ell}
$$

where

$$
f^{\ell}\left(t, \eta^{\ell}\right)=\Psi^{\mathrm{T}} W \Phi\left(P^{\mathrm{T}} \Phi\right)^{-1} f\left(t, P^{\mathrm{T}} \Psi \eta^{\ell}\right)
$$

Algorithm 2 DEIM

Require: p and matrix $F=\left[f\left(t_{1}, y_{1}\right), \ldots, f\left(t_{1}, y_{1}\right)\right] \in \mathbb{R}^{m \times n}$
1: Compute POD basis $\Phi=\left[\phi_{1}, \ldots, \phi_{p}\right]$ for F
2: $\operatorname{idx} \leftarrow \arg \max _{j=1, \ldots, m}\left|\left(\phi_{1}\right)_{\{j\}}\right|$;
$U=\left[\phi_{1}\right]$ and $\vec{i}=\mathrm{idx} ;$
for $i=2$ to p do
$u \leftarrow \phi_{i}$;
Solve $U_{\vec{i}} c=u_{\vec{i}}$;
$r \leftarrow u-U c$;
$\operatorname{idx} \leftarrow \arg \max _{j=1, \ldots, m}\left|(r)_{\{j\}}\right| ;$
$U \leftarrow[U, u]$ and $\vec{i} \leftarrow[\vec{i}, \mathrm{idx}] ;$
end for
return $\Phi \in \mathbb{R}^{m \times p}$ and index vector, $\vec{i} \in \mathbb{R}^{p}$

Notes:

- Most of the computational cost is hidden on line 6 .

Link with OpenFOAM

Introduction	POD \& DEIM	Link with OpenFOAM	Applications	Conclusions
0	\circ	0000		
0	00	00000	000	

Rewrite OpenFOAM discretization as above studied problem

- With $\Delta \Omega^{h}:=\operatorname{diag}\left(\delta \Omega_{i}^{h}\right) \in \mathbb{R}^{m \times m}$ a FVM semi-discretized problem can be written as,

$$
\Delta \Omega^{h} \dot{y}+\mathcal{L}^{h}(t, y)=0 \Longrightarrow \dot{y}=-\left(\Delta \Omega^{h}\right)^{-1} \mathcal{L}^{h}(t, y)
$$

$\mathcal{L}^{h}=-\tilde{A}(t) y-\tilde{b}(t, y) \ldots$ FVM spatial discretization operator

- It is possible to formally write (almost) the same system as before,

$$
\dot{y}=A(t) y+b(t, y), \quad A(t)=\left(\Delta \Omega^{h}\right)^{-1} \tilde{A}(t), b(t, y)=\left(\Delta \Omega^{h}\right)^{-1} \tilde{b}(t, y)
$$

- The time dependence of A is a result of the linearization process. E.g. $\nabla \cdot\left(u^{k} \otimes u^{k}\right) \approx \nabla \cdot\left(u^{k-1} \otimes u^{k}\right)$
- The POD-DEIM approach to ROM creation will have to be slightly modified

Address the risen difficulties

- Needed snapshots, $\left\{\left(y_{i}, A_{i}, b_{i}\right)\right\}_{i=1}^{n}, A_{i} \in \mathbb{R}^{m \times m}, i=1, \ldots, m$ but A_{i} are sparse matrices, with $\sim 5 \mathrm{~m}$ non-zero elements $\Longrightarrow \sim 5 \mathrm{~m}$ floats and $\sim 8 \mathrm{~m}$ integers will be stored.
- A way for ROM evaluation between the stored snapshots is needed $\Longrightarrow I$ need to interpolate between A_{i-1} and A_{i} and b_{i-1} and $b_{i}, i=2, n$
- Simplest case: linear interpolation,

$$
\begin{gathered}
\varpi(t)=\frac{t-t_{i-1}}{t_{i}-t_{i-1}}, \hat{A}(t)=\varpi(t) A_{i-1}+(1-\varpi(t)) A_{i} \\
\hat{A}^{\ell}(t)=\Psi^{\mathrm{T}} W \hat{A}(t) \Psi=\Psi^{\mathrm{T}} W\left(\varpi(t) A_{i-1}+(1-\varpi(t)) A_{i}\right) \Psi= \\
=\varpi(t) \Psi^{\mathrm{T}} W A_{i-1} \Psi+(1-\varpi(t)) \Psi^{\mathrm{T}} W A_{i} \Psi=\varpi(t) A_{i-1}^{\ell}+(1-\varpi(t)) A_{i}^{\ell}
\end{gathered}
$$

- Same trick can be done for $b(t, y)$ and after the ROM creation, I do not need to store the full data.

Example 1 - Passive scalar advection

Phase-volume fraction advection in multiphase flow

interFoam - Volume-of-Fluid model for multiphase flow

$$
\begin{gathered}
\alpha_{t}+\nabla \cdot(u \alpha)+\nabla \cdot\left(u_{r} \alpha(1-\alpha)\right)=0 \\
\alpha_{t}+\mathcal{L}_{\alpha}^{h}(t, \alpha)=0 \rightarrow \alpha_{t}=A_{\alpha}(t) \alpha+b_{\alpha}(t, \alpha) \rightarrow \dot{\eta}_{\alpha}^{\ell}=\hat{A}_{\alpha}^{\ell}(t) \eta_{\alpha}^{\ell}+\hat{b}_{\alpha}^{\ell}\left(t, \eta_{\alpha}^{\ell}\right)
\end{gathered}
$$

$$
\text { Wanted: } \dot{y}_{\alpha}=A_{\alpha}(t) y_{\alpha}+b_{\alpha}(t, y)
$$

Example of implementation in OpenFOAM

fvm:: div(phi, alpha1, alphaScheme)
$+\mathrm{fvc}:: \operatorname{div}($
-fve: : flux (
-phir, scalar (1)-alpha1, alpharScheme), alpha1, alpharScheme
$)=0$

Link: fvm $\rightarrow A_{\alpha}(t), \mathrm{fvc} \rightarrow b_{\alpha}(t, y)$

Example 1 - Passive scalar advection Numerical results

Example 1 - Passive scalar advection

Example 1 - Passive scalar advection

Modes 1,2,3

Modes 2,3,4

Modes 3,4,5

Modes 6,7,8

Modes 4,5,6

Modes 5,6,7

Saddle-point problem

$$
\begin{aligned}
u_{t}+\nabla \cdot(u \otimes u)-\nabla \cdot(\nu \nabla u) & =-\nabla \tilde{p}+\tilde{f} \\
\nabla \cdot u & =0
\end{aligned} \rightsquigarrow\left(\begin{array}{cc}
A & B^{T} \\
B & 0
\end{array}\right)\binom{u}{p}=\binom{f}{0}
$$

Jacobi iterations with Schur-complement based p-U coupling

$$
\begin{gathered}
u^{*} \leftarrow A u^{*}=f-B^{\mathrm{T}} p^{k-1} \\
p^{k} \leftarrow B D^{-1} B^{\mathrm{T}} p^{k}=B D^{-1}\left(f-(L+U) u^{*}\right) \\
u^{k} \leftarrow D^{-1}\left(f-(L+U) u^{*}-B^{\mathrm{T}} p^{k}\right)
\end{gathered}
$$

At convergence

$$
\begin{gathered}
B D^{-1} B^{\mathrm{T}} p^{k}=B D^{-1}\left(f-(L+U) u^{*}\right) \approx B A^{-1} B^{\mathrm{T}} p=B A^{-1} f \\
u=D^{-1}\left(f-(L+U) u^{*}\right)-D^{-1} B^{\mathrm{T}} p
\end{gathered}
$$

Outcome for ROM

- "Natural" is to construct ROM for p
- For the velocity, I can choose between computational cost and consistency and accuracy

Construction of ROM for p

Implementation of pressure equation in OpenFOAM and construction of ReM basearon it

Notation

$$
D^{-1} \rightarrow \text { rAU } \quad \text { and } \quad D^{-1}\left(f-(L+U) u^{*}\right) \rightarrow \text { HbyA } \quad(\text { in oF }, * \text { Eqn.A }() \rightarrow D)
$$

Implementation of pressure eqauation in OpenFOAM

fvm : : Iaplacian (rAU, p) == fvc:: div (HbyA)

$$
\text { Wanted: } \dot{y}_{p}=A_{p}(t) y_{p}+b_{p}\left(t, y_{p}\right)
$$

Implicit definition of time derivative for pressure

$$
\begin{array}{rlrl}
\nabla \cdot(u \otimes u)-\nabla \cdot(\nu \nabla u) & =-\nabla \tilde{p}+\tilde{f} & \text { UEqnMORE } \\
\nabla \cdot u & =0 & D_{h}^{-1} \rightarrow \text { rAUMORE } \\
D_{h}^{-1}\left(f_{h}-\left(L_{h}+U_{h}\right) u_{h} *\right) \\
\rightarrow
\end{array} \rightarrow
$$

fvm:: laplacian (rAUMORE, p) = fvc:: div (HMOREbyAMORE)

$$
\text { Link: } \mathrm{fvm} \rightarrow A_{p}(t), \mathrm{fvc} \rightarrow b_{p}\left(t, y_{p}\right)
$$

Reconstruction of the velocity field

Expansion of snapshots for pressure

Standard approach snapshots:

$$
\mathcal{S}=\left\{\left(y_{k, i}, A_{k, i}, b_{k, i}\right\}_{i=1}^{n}, k=p, U\right.
$$

Expanded snapshots for pressure:

$$
\mathcal{S}^{e}=\left\{\left(y_{p, i}, A_{p, i}, b_{p, i}, \text { rAUMORE }_{i}, \text { HMOREbyAMORE }_{i}\right\}_{i=1}^{n}\right.
$$

Storage

$\mathcal{S} \ldots n[(1+3) m+(5+5) m+(1+3) m] \approx 15 n m$ values
$\mathcal{S}^{e} \ldots n(m+5 m+m+1 m+3 m) \approx 11 n m$ values

Computational cost

$\mathcal{S} \ldots \sim 4 n$ calculations of $\Psi^{\mathrm{T}} W A(t) \Psi$, evaluation of $\sim 4 \mathrm{ROMs}$
$\mathcal{S}^{e} \ldots$
$\sim n$ calculations of $\Psi^{\mathrm{T}} W A(t) \Psi$,
$\sim n$ calculations of $\Psi^{\mathrm{T}} W$ rAUMORE $_{i} \Psi$,
$\sim n$ calculations of $\Psi^{\mathrm{T}} W$ HMOREbyAMORE ${ }_{i} \Psi$,
evaluation of 1 ROM + interpolation between $\operatorname{rAUMORE}_{i}{ }^{R O M}$ and between HMOREbyAMORE ${ }_{i}{ }^{R O M}$

$$
U_{i} \approx \text { HMOREbyAMORE }{ }^{R O M}+\mathrm{rAUMORE}^{R O M} \nabla p^{R O M}
$$

Example 2 - Von Karman vortex street Validation of the approach - incompressible single phase flow

$$
t=15.00[\mathrm{~s}]
$$

Example 2 - Von Karman vortex street Validation of the approach - incompressible single phase flow

Example 3 - 2D mixer

Example 4 - 2D mixer

$$
t=0.2947[\mathrm{~s}]
$$

plate inclination $=\pi / 3$

$$
\|U\|\left[\mathrm{ms}^{-1}\right]
$$

Applications

Introduction	POD \& DEIM \circ	Link with OpenFOAM $\circ 000$ 0000000	Applications $\bigcirc 000$	Conclusions	Discussion

Importance

- Chemical industry creates mixtures but sells "pure species" (e.g. oil)
- 2014, 3\% of energy consumption of the USA was due to the separation columns

Challenges

- Multiphase flow \rightarrow non-steady process
- Complex geometry
- Simultaneous heat and mass transfer
[Sulzer ChemTech]

Packed column

Complex multiphase flow

Semi-industrial scale CFD

Challenge: Geometry of structured packing

Gas flow simulation: Incompressible steady state RANS simulation

Comparison with experimental data: [Haidl, J. UCT Prague]

Comparison with experimental data: [Haidl, J. UCT Prague]

Full case: Flow through the Mellapak 250.X packing

Semi-industrial scale application

Full case: Predicted vs. converged solution in L1

Semi-industrial scale application

ROM based initial guess prediction for full NS solver (simpleFoam)
Full case: Predicted vs. converged solution in L1

Semi-industrial scale application

ROM based initial guess prediction for full NS solver (simpleFoam)
Comparison with experimental data: [Haidl, J. UCT Prague]

Cost function: Single phase, toy problem

$$
\begin{gathered}
F\left(u_{0}\right)=\frac{\Delta \tilde{p}-\Delta \tilde{p}_{M a x}}{\Delta \tilde{p}_{M a x}}+K \frac{Q^{2}-2 Q_{M a x} Q+Q_{M i n}\left(2 Q_{M a x}-Q_{M i n}\right)}{\left(Q_{M a x}-Q_{M i n}\right)^{2}} \\
\Delta \tilde{p}=\Delta \tilde{p}\left(u_{0}\right), \quad Q=Q\left(u_{0}\right), \quad U_{0}=\left(-u_{0}, 0,0\right)
\end{gathered}
$$

Optimal operation conditions

Offline (ROM-based) operation conditions optimization, gas flow, Mellarear $250=$
Available data: Cost function curve, $F\left(u_{0}\right), u_{0} \in\langle 0.1,3.0\rangle$

Optimal operation conditions

Offline (ROM-based) operation conditions optimization, gas flow, Mellapar $250-\times$
Cost function minimization: Results of SIMPLEX and COBYLA algorithms

Optimal operation conditions

Offline (ROM-based) operation conditions optimization, gas flow, Mellapai $250-\times$
Solution quality: Comparison of ROM results with reference simulations (COBYLA)

Optimal operation conditions

Offline (ROM-based) operation conditions optimization, gas flow, Mellapar 250 -
Solution quality: Comparison of RO and Full models results

Conclusions

Introduction	POD \& DEIM	Link with OpenFOAM	Applications	Conclusions
\circ	\circ	0000		
\circ	$\circ 0$	000000		

Currently available

- Extended snapshot preparation for simpleFoam, pimpleFoam and interFoam
- Python module for ROM creation based on prepared outputs from OpenFOAM

Advantages

- Snaphots are created during postprocessing - simulations can be ran in parallel
- All the OpenFOAM capabilities are accessible (including e.g. MRF or turbulence modeling)

Disadvantages

- Extended shapshots have to be stored - a lot of data
- Creation of $A_{i}^{\ell}, i=1, \ldots, n$ is time consuming

The work of M. Isoz was supported by the Centre of Excellence for nonlinear dynamic behaviour of advanced materials in engineering CZ.02.1.01/0.0/0.0/15_003/0000493 (Excellent Research Teams) in the framework of Operational Programme Research, Development and Education.

Special thanks to Prof. Michael Hinze from Hamburg university for his inputs and discussions during the preparation of the presented work.
[1] Volkwein, S.: Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling. LN, University of Konstanz, 2013.
[2] Volkwein, S.: Proper Orthogonal Decomposition: Applications in Optimization and Control
[3] Chaturantabut, S. Sorensen, D. C.: Nonlinear Model Reduction Via Discrete Empirical Interpolation, SIAM J. Sci. Comput., vol. 32, (2010) pp. 2737-2764.
[4] Chaturantabut, S. Sorensen, D. C.: Application of POD and DEIM on Dimension Reduction of Nonlinear Miscible Viscous Fingering in Porous Media, Math. Comput. Model. Dyn. Syst., (Technical Report: CAAM), Rice University, TR09-25
[5] Alla, A. Kutz, J. N.: Nonlinear Model Order Reduction Via Dynamic Mode Decomposition, preprint

Thank you for your attention

Next steps

Towards ROM size reduction and multiparametric systems
ROM size reduction: \mathcal{S}^{e} selection based on greedy algorithm
$\mathrm{Re}=5000[-]$
$\|U\|,\left[\mathrm{m} \mathrm{s}^{-1}\right]$

ROM size reduction: \mathcal{S}^{e} selection based on greedy algorithm

ROM size reduction: \mathcal{S}^{e} selection based on greedy algorithm

ROM size reduction: \mathcal{S}^{e} selection based on greedy algorithm
Iteration 2

ROM size reduction: \mathcal{S}^{e} selection based on greedy algorithm

ROM size reduction: \mathcal{S}^{e} selection based on greedy algorithm

ROM size reduction: \mathcal{S}^{e} selection based on greedy algorithm

ROM size reduction: \mathcal{S}^{e} selection based on greedy algorithm

Next steps

Towards ROM size reduction and multiparametric systems
ROM size reduction: \mathcal{S}^{e} selection based on greedy algorithm

- Let us have rather nice functions defined on a nice domain,

$$
\varphi, \tilde{\varphi} \in L^{2}(\Omega), \quad \Omega \subset \mathbb{R}^{3} \ldots \text { bounded, connected, } \ldots
$$

- A brief reminder,

$$
\langle\varphi, \tilde{\varphi}\rangle_{L^{2}(\Omega)}=\int_{\Omega} \varphi \tilde{\varphi} \mathrm{d} x, \quad\|\varphi\|_{L^{2}(\Omega)}=\sqrt{\langle\varphi, \varphi\rangle_{L^{2}(\Omega)}}
$$

- Denote Ω^{h} a FVM discretization of Ω and $\delta \Omega_{i}^{h}$ the volume of the i-th cell,

$$
\Omega \approx \Omega^{h}=\bigcup_{i=1}^{\mathrm{nCells}} \Omega_{i}^{h}, \quad V(\Omega) \approx V\left(\Omega^{h}\right)=\sum_{i=1}^{\mathrm{nCells}} \delta \Omega_{i}^{h}
$$

- Introduce a discrete inner product, $\langle\varphi, \tilde{\varphi}\rangle_{L_{h}^{2}}$,

$$
\langle\varphi, \tilde{\varphi}\rangle_{L^{2}(\Omega)}=\int_{\Omega} \varphi \tilde{\varphi} \mathrm{d} x \approx \sum_{i=1}^{\mathrm{nCells}} \int_{\Omega_{i}^{h}} \varphi \tilde{\varphi} \mathrm{~d} x=\sum_{i=1}^{\mathrm{nCells}} \varphi_{i}^{h} \tilde{\varphi}_{i}^{h} \delta \Omega_{i}^{h}=\langle\varphi, \tilde{\varphi}\rangle_{L_{h}^{2}}
$$

- Denote $W=\operatorname{diag}\left(\delta \Omega_{1}^{h}, \ldots, \delta \Omega_{\mathrm{nCells}}^{h}\right)$. Hence, $\langle\varphi, \tilde{\varphi}\rangle_{L_{h}^{2}}=\left(\varphi^{h}\right)^{\mathrm{T}} W \varphi^{h}$.

Residuals evolution

Comparison of the residuals evolution for Mellapak cases in L0,L1 and
Full case: Residuals evolution, from potentialFoam initialized fields
Altix UV 2000, 4 cores, 3000000.0 MM cells, case: sF_u0_2.4_Mellapak250XV1, solver: simpleFoam
-parallel, version: v3.0〒-e $\overline{9} 41$ ée6c15e9

Residuals evolution

Comparison of the residuals evolution for Mellapak cases in L0,L1 and
Full case: Residuals evolution, from potentialFoam initialized fields
Altix UV 2000, 4 cores, 3000000.0 MM cells, case: sF_u0_2.4_Mellapak250XV1, solver: simpleFoam
-parallel, version: v3.0〒-e $\overline{9} 41$ ée6c15e9

Residuals evolution

Comparison of the residuals evolution for Mellapak cases in L0,L1 and
Full case: Residuals evolution, from ROM predicted fields, L1
Altix UV 2000, 4 cores, 3000000.0 MM cells, case: sF_u0_2.4_ROM, solver: simpleFoam -parallel,
version: v3.0+-e941-ee $\overline{6} c 1 \overline{5} \mathrm{e} 9$

Residuals evolution

Comparison of the residuals evolution for Mellapak cases in L0,L1 and
Full case: Residuals evolution, from ROM predicted fields, L2
Intel(R) Core(TM) i5-5200U CPU @ 2.20 GHz , 4 cores, 3000000.0 MM cells, case: sF_u0_1.5_ROM2, solver:
simpleFoam -parallel, version: v3.0+-e941ee6c15e9

