Deciphering hydrodynamics of packed columns

Effects of surface textures on gravity driven liquid flow on inclined plate

Martin Isoz

UCT Prague, Department of mathematics

11th OpenFOAM Workshop June 26-30, 2016

Intro

00000

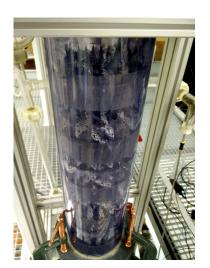
Introduction

Why to pay attention to a flow on a plate

O

Numerous applications, our concentration lies in deciphering flow in separation columns

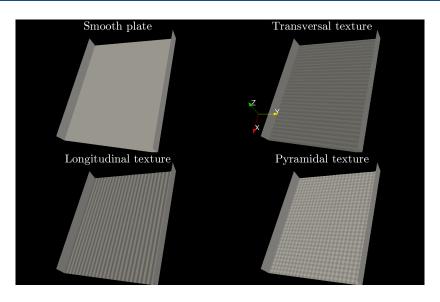
[Sulzer ChemTech]


Hydrodynamics

- Fuel cells
 - water management inside PEMFC fuel cells
- Aerospace engineering
 - in flight formation of rivulets on plane wings

Gas-liquid interface

- Packed columns
 - wetting performance
 - mass transfer coefficients
- Catalytic reactors
 - wetting of the catalyst



Structured packing – approximation

First step, flow on an inclined plate equipped with different types of texture

Intro

00000

Methodological background

Multiphase hydrodynamics, simultaneous mass and heat transfer, no chemical reaction

Momentum and continuity equations, N phases

$$\rho_i \frac{\partial}{\partial t}(u_i) + \nabla \cdot (\rho_i u_i \otimes u_i + p_i E) = \nabla \cdot \tau + F_i, \quad i = 1, \dots, N$$


$$\rho_i = \rho(c_i, T_i), \quad \nabla \cdot (u_i) = S_i^{\rho} = \sum_{j=1}^M \hat{R}_{i,j}^c$$

Mass transfer (no reaction), M species

$$\frac{\partial}{\partial t}c_{i,j} + \nabla \cdot (u_i c_{i,j}) = \nabla \cdot \left(\Gamma_{i,j}^c \nabla c_{i,j}\right) + S_{i,j}^c, \qquad j = 1, \dots, M$$

Heat transfer (no reaction), N phases

$$\frac{\partial}{\partial t} T_i + \nabla \cdot (u_i T_i) = \nabla \cdot (\Gamma_i^T \nabla T_i) + S_i^T, \qquad i = 1, \dots, N$$

Momentum and continuity equations

Advection equation for gas-liquid interface (GLI)

$$\tilde{\pmb{h}}_t \quad + \quad \nabla \cdot (u\tilde{h}) \quad + \quad \nabla \cdot \left[u_r \tilde{h} (1-\tilde{h}) \right] = 0$$

Notations

 $u[{
m m\,s^{-1}}]$ bulk velocity $u_r[{
m m\,s^{-1}}]$.. compression velocity $\mu[{
m Pa\,s}]$ dynamic viscosity $\rho[{
m kg\,m^{-3}}]$ density

 $\gamma [{
m N} \ {
m m}^{-1}]$ surface tension $g [{
m m} \ {
m s}^{-2}]$ gravitational acceleration $x [{
m m}]$ position vector $\tilde{h} [-]$ GLI tracking function

Comparing forces in a falling film

Reynolds number

$$Re = \frac{\rho UL}{\mu} = \frac{UL}{\nu}$$

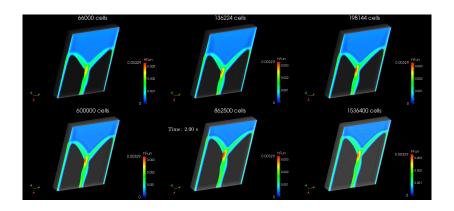
 $U\dots$ film velocity scale, $L\dots$ film characteristic dimension (thickness) $\rho\dots$ liquid density, $\mu, \nu\dots$ liquid dynamic/kinematic viscosity

$$Re = \frac{inertia}{viscosity}$$

Weber number

We =
$$\frac{\rho U^2 L}{\gamma}$$

 $U\dots$ film velocity scale, $L\dots$ film characteristic dimension (thickness) $\rho\dots$ liquid density, $\gamma\dots$ gas-liquid surface tension


$$We = \frac{inertia}{capillarity}$$

Discretization schemes

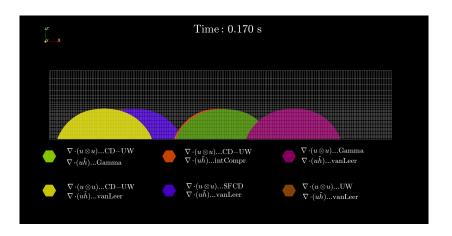
Attempts on optimization of the discretion schemes for the given task

Mesh: $6 \times 5 \times 0.7 \, \mathrm{cm}$ geometry, 66000 - 1500000 hex cells, $\mathrm{Re_I} = 124, \, \mathrm{We} = 0.71$

Attempts on optimization of the discretion schemes for the given task

$\begin{array}{ll} \nabla \cdot (u \otimes u) & \text{Upwind differencing (UD)} \\ \nabla \cdot (\mu \nabla u) & \text{Central differencing (CD)} \\ \nabla \cdot (u \tilde{h}) & \text{CD-UD with van Leer limiter} \\ \nabla \cdot \left[u_r \tilde{h} (1 - \tilde{h}) \right] & \text{Central differencing (CD)} \end{array}$	Term	Used scheme
$\begin{array}{ll} \nabla \cdot (\mu \nabla u) & \text{Central differencing (CD)} \\ \nabla \cdot (u \tilde{h}) & \text{CD-UD with van Leer limiter} \\ \nabla \cdot \left[u_r \tilde{h} (1 - \tilde{h}) \right] & \text{Central differencing (CD)} \end{array}$	$u_t, ilde{h}_t$	implicit Euler
$ abla \cdot (u\tilde{h})$ CD-UD with van Leer limiter $ abla \cdot \left[u_r \tilde{h} (1 - \tilde{h}) \right]$ Central differencing (CD)		
$ abla \cdot \left[u_r \tilde{h} (1 - \tilde{h}) \right]$ Central differencing (CD)		Central differencing (CD)
	$ abla \cdot (u ilde{h})$	CD-UD with van Leer limiter
$\nabla \cdot \dot{u}$ Central differencing (CD)	$\nabla \cdot \left[u_r \tilde{h} (1 - \tilde{h}) \right]$	Central differencing (CD)
	$\nabla \cdot u$	Central differencing (CD)

Table: Default ddtSchemes and divSchemes


Commentary

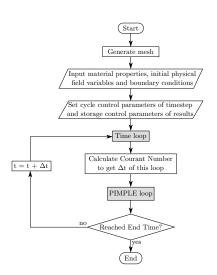
- Generally stable settings but UD is highly diffusive and the choice of van Leer limiter might be questionable
- Problem is highly dependent on surface forces and thus on interface sharpness

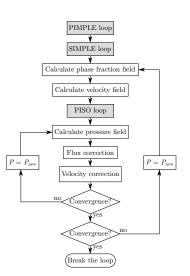
Case: Spreading of 2D droplet, $R_0 = 2 \,\mathrm{mm}, \, h_0 = 0.7 \,\mathrm{mm}, \, \theta_\infty = 70^\circ$

Attempts on optimization of the discretion schemes for the given task

Term	Used scheme
$u_t, ilde{h}_t$	Crank-Nicolson blended with Euler
$\nabla \cdot (u \otimes u)$	Self-filtered central differencing (SFCD)
$\nabla \cdot (\mu \nabla u)$	Central differencing (CD)
$\nabla \cdot (u\tilde{h})$	Gamma with $\beta=0.25$
$\nabla \cdot \left[u_r \tilde{h} (1 - \tilde{h}) \right]$	Interface compression
$\nabla \cdot u$	Central differencing (CD)

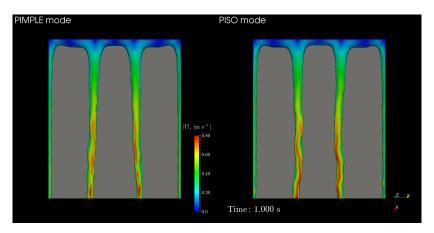
Table: "Optimized" ddtSchemes and divSchemes


Commentary


 The schemes are modified to make use of physical bounds on the simulated quantities

Simulation scheme

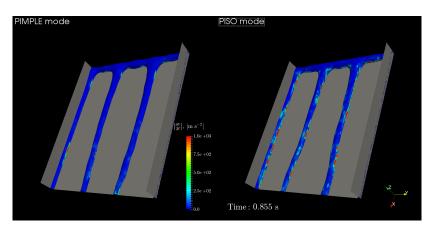
PIMPLE algorithm with adaptive time step



PIMPLE vs. PISO algorithms

PIMPLE: improved stability and control BUT at higher computational cost

Mesh: 0.3 millions of "hex" cells, graded in z-axis direction smooth plate, $Re_I = 62$, We = 0.18



PIMPLE vs. PISO algorithms

PIMPLE: improved stability and control BUT at higher computational cost

Mesh: 0.3 millions of "hex" cells, graded in z-axis direction smooth plate, $\mathrm{Re}_I=62,~\mathrm{We}=0.18$

Used methods of numerical linear algebra

Solvers for large (sparse) systems of linear algebraic equations (SLAE)

General notes

For the solved class of problems,

- Meshes usually have 1⁺MM cells → systems with millions of unknowns
- Phase volume fraction field behaves "well"
 - No preconditioning nor advanced solvers are needed for solving the resulting SLAE.
 - Gauss-Seidel method is more than enough (usually converges in 1 or 2 iterations).
- Pressure correction equation is a bit more complicated
 - Krylov subspaces based solver, preconditioned conjugate gradient (PCG) has to be employed
 - Rather expensive and powerful preconditioner is necessary (used are fast incomplete Cholesky decomposition (FDIC) and geometric multigrid methods (GAMG).

8

Two main approaches to mesh size optimization

Mesh size optimization idea 1: Follow the variable of interest,

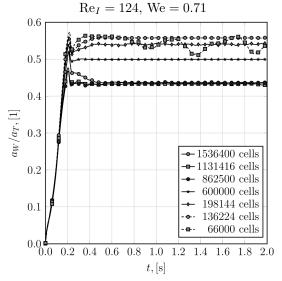
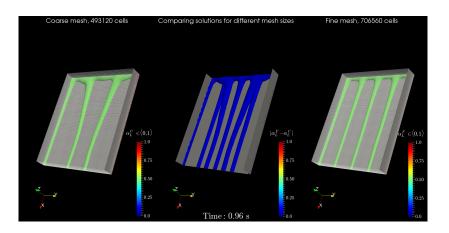
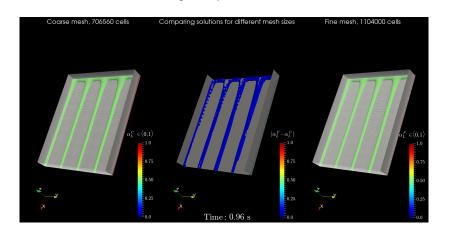



 Image: Control of the control of the

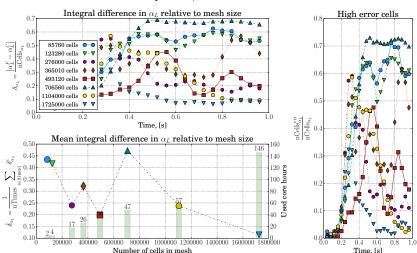
Two main approaches to mesh size optimization


Mesh size optimization idea 2: Compare the α_L fields, ${\rm Re}_I=62, {\rm We}=0.18$

O

Two main approaches to mesh size optimization

Mesh size optimization idea 2: Compare the α_L fields, ${\rm Re}_I=62, {\rm We}=0.18$



Two main approaches to mesh size optimization

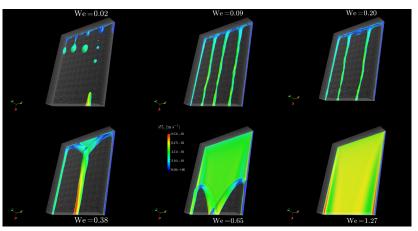
Mesh size optimization idea 2: Compare the α_L fields,

 $Re_I = 62$, We = 0.18

Intro

00000

Results

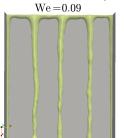


Flow on a smooth plate

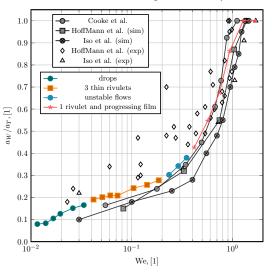
blockMesh generated mesh consisting of 1140000 cells

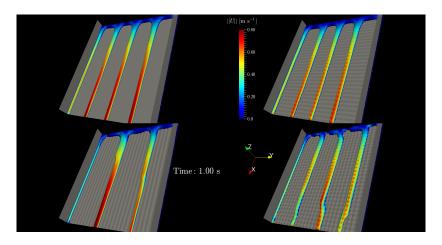
Wetted to total area ratio: Flow regimes in dependence on We

Wetted to total area ratio: Flow regimes in dependence on We

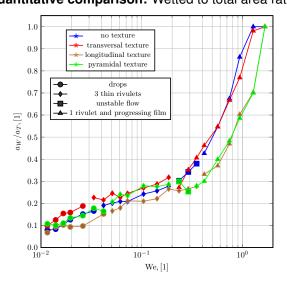


[Yoshiuki I. et al. Numerical and experimental study on liquid film flows on packing elements in absorbers for post-combustion CO₂ capture, *Energy Procedia*, **2013**]




blockMesh generated mesh consisting of 1140000 cells

Wetted to total area ratio: Flow regimes in dependence on We



Qualitative comparison: Effects of textures

Quantitative comparison: Wetted to total area ratio

Intro

00000

Conclusion

Results

00

Flow on a smooth plate

- Already available:
 - Simulation results in agreement with the published data
 - Identification of flow regimes in dependence on Re, We New
- Outlook:
 - Study of the influence of boundary conditions on the solution
 - Study of wetting in dependence on plate inclination and liquid type

Flow on a textured plate

- Already available:
 - Automatic geometry creation and meshing (transversal, longitudinal and pyramidal texture New)
- Outlook:
 - Texture optimization (density, roughness)
 - ⇔ Reduced Order Modeling
 - Include snappyHexMesh in the mesh creation process

Acknowledgments

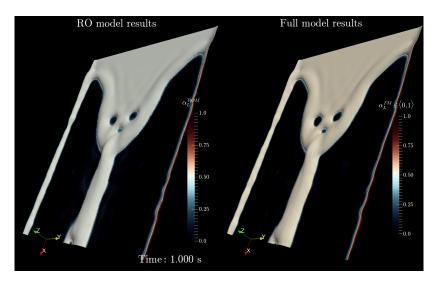
The author thankfully acknowledges financial support from IGA of UCT Prague, grant numbers A2_FTOP_2016_024 and A1_FCHI_2016_004.

References I

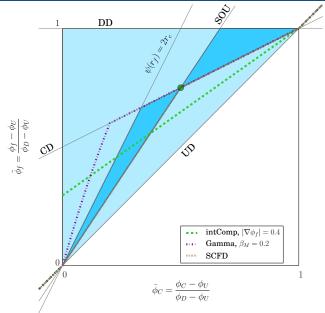
- [1] OpenCFD, OpenFOAM: The Open Source CFD Toolbox. User Guide Version 1.4, OpenCFD Limited. Reading UK, Apr. 2007.
- [2] J. Anderson, *Modern Compressible Flow: With Historical Perspective*, 3rd ed. New York: McGraw-Hill, 2003.
- [3] J. J. Cooke, S. Gu, L. M. Armstrong, and K. H. Luo, "Gas-liquid flow on smooth and textured inclined planes." World Academy of Science, Engineering and Technology, vol. 68, pp. 1712–1719, 2012.
- [4] Y. Xu, J. Yuan, J.-U. Repke, and G. Wozny, "CFD study on liquid flow behavior on flat plate focusing on effect of flow rate." *Engineering Applications of Computational FLuid Mechanics*, vol. 6, no. 2, pp. 186–194, 2012.
- [5] D. Sebastia-Saez, S. Gu, and P. Ranganathan, "3D modeling of hydrodynamics and physical mass transfer characteristics of liquid flom flows in structured packing elements." *International Journal of Greenhouse Gas Control*, vol. 19, pp. 492–502, 2013.

References II

- [6] Y. Haroun, L. Raynal, and P. Alix, "Prediction of effective area and liquid hold-up in structured packings by CFD." *Chemical Engineering Research and Design*, vol. 92, pp. 2247–2254, 2014.
- [7] A. Hoffmann, I. Ausner, J.-U. Repke, and G. Wozny, "Fluid dynamics in multiphase distillation processes in packed towers." *Computers & hemical Engineering*, vol. 29, no. 6, pp. 1433–1437, 2005.
- [8] —, "Detailed investigation of multiphase (gas-liquid and gas-liquid-liquid) flow behaviour on inclined plates." Chemical Engineering Research and Design, vol. 84, no. A2, pp. 147–154, 2006.

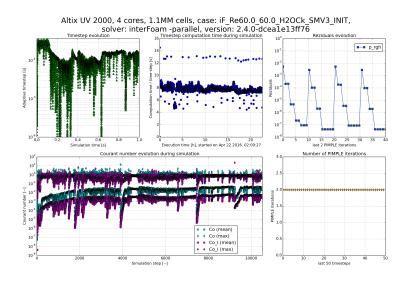


Thank you for your attention


Qualitative comparison: Reduced order vs. full model

Convective terms discretization

S


NVD of the used convective terms

Simulation control

Altix UV 2000, 1.1MM of hex cells, 4 cores

