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Current progress in numerical methods and available computational power combined with industrial needs promote the
development of more and more complex CFD simulations. However, such models are expensive from the point of view
of the data storage and the time necessary for their evaluation. Nevertheless, industrial practice often calls for parametric
studies and optimizations performed using these models.
The model order reduction (MOR) is a useful tool for accelerating calculations connected to parametric studies or
optimizations of complex systems. In this paper, we consider MOR based on the proper orthogonal decomposition (POD)
with Galerkin projection, which is well described for example by Pinnau [1] or Volkwein [2]. The problems arising from
the nonlinearities present in the original model are addressed within the framework of the discrete empirical interpolation
method (DEIM) of Chaturantabut and Sorensen [3].
The presented reduced order model (ROM) creation technique represents an a posteriori approach to MOR [4]. Hence,
the solution of the full order model (FOM) has to be available for the ROM creation. Moreover, not only the solution of
the system is necessary for the POD-DEIM based model order reduction, the method also needs access to several other
data structures, which are internal to the CFD solver and which are usually not readily available.
The open-source CFD library OpenFOAM [5] provides an easy access to the internal data structures needed for the ROM
construction. Furthermore, OpenFOAM has been successfully applied to the solution of industrial scale problems in
various fields of CFD. In this paper, we provide a link between POD-DEIM based MOR and the OpenFOAM library.
Then, we use POD-DEIM based MOR to reduce the computational time necessary for evaluation of parametric studies in
OpenFOAM.

Link between POD-DEIM based MOR and OpenFOAM

In order to outline the link between POD-DEIM based model order reduction and the OpenFOAM CFD library, we
concentrate solely on the steady-state incompressible Navier-Stokes equations for laminar flow,

∇ · (U⊗U)−∇ · (ν∇U) = −∇p+ f , ∇ ·U = 0 , (1)

defined on a simply connected bounded domain Ω ⊂ R3 and supplemented with appropriate boundary data. We study the
dependence of the solution [U, p] to the system (1) on some parameter µ ∈ D ⊂ R, i.e. U : D×Ω→ R3, p : D×Ω→ R.
To be able to apply the proper orthogonal decomposition and discrete empirical interpolation to construct a reduced order
model, the full order model has to have the form of

0 = Ay + b(µ,y), ∀µ ∈ D , (2)

where A is the system matrix, b(µ,y) is the vector of nonlinearities and y is the vector of unknowns.
After the projection of the full order model solution space V on the `-dimensional subspace V ` spanned by the POD basis
{ψ}`j=1 we obtain the following reduced order system,

0 = A`η` + f `(µ,η`) , (3)

where we defined the vector-valued mapping

η` := (η`i )
T : D → Rm, i = 1, . . . , ` , (4)

the reduced system matrix
A` := (a`ij) ∈ R`×`, a`ij = 〈Aψj ,ψi〉 , (5)
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and the ROM nonlinearities

f ` := (f `i )T : D → R`, f `i (µ,η) =

〈
b

µ,∑̀
j=1

ηjψj

 ,ψi

〉
. (6)

In the above, we denote by 〈·, ·〉 an inner product. The costs connected to the evaluation of the nonlinearities (6) are
mitigated via DEIM, see [3].
The continuity equation (1)2 is pressure free. Thus, the linearization and discretization of (1) on a finite volume mesh Ωh

with m cells leads to a saddle point problem,(
M NT

N 0

)(
Uh

ph

)
=

(
fh

0

)
, (7)

where we denoted the discrete representations of the considered functions by the superscript h. The matrix N ∈ Rm×3m

coincides with a discrete representation of the ∇ operator. The matrix M ∈ R3m×3m is slightly more difficult. The
Navier-Stokes equations for an incompressible isothermal flow are nonlinear. Hence, the nonlinear convective term
∇ · (U⊗U), needs to be linearized during the construction of the matrix M . If we apply the Newton linearization to
the nonlinear convective term,

∇·(Un ⊗Un) ≈ Uo·∇Un+Un·∇Uo =: P(Uo,Un), n . . . current time step/iteration, o . . . previous iteration , (8)

we can define a linear operator
M(Uo,Un) := ∇ · (ν∇Un) + P(Uo,Un) , (9)

and the matrix M is a discrete representation of the operatorM.
The matrices M and N are, as results of the FV discretization, large and sparse. The system (7) cannot be directly solved
by the available methods of numerical linear algebra [6, 7]. However, if one assumes the matrix M to be regular, it is
possible to explicitly express the velocity from the first row of the system (7) and to substitute for it in the second row.
Doing so, the following system for one unknown ph ∈ Rm is obtained

NM−1NTph = NM−1fh, Uh = M−1
(
fh −NTph

)
. (10)

Unfortunately, because M is a large sparse matrix, its inverse is usually not obtainable.
The issue of calculation of the inverse M−1 is mitigated by splitting the matrix M as M = D + L+ U , where D, L and
U are a diagonal, and lower and upper triangular matrix, respectively. The inverse M−1 is approximated as M−1 ≈ D−1

and the following iterations are constructed,

ND−1NTph,n = ND−1(fh − (U + L)Uh,o), Uh,n = D−1
(
fh − (U + L)Uh,o −NTph

)
(11)

The reduced order model generated from the solution to (1) computed by a SIMPLE-based OpenFOAM solver (e.g.
simpleFoam) must take into account the above outlined solution procedure. The natural variable for solution techniques
for the incompressible Navier-Stokes equations based on the solution of the system (11) is the pressure. Thus, it would
seem reasonable to base the reduced order model directly on the relations (11). We propose to rewrite the system (11)1 as

0 = A(µ)ph + b(µ, ph), A(µ) := ND−1NT, b(µ, ph) := ND−1(fh − (U + L)Uh) , (12)

where Uh is the solution for the velocity obtained from the SIMPLE iterations. The system (12) is in the form (3) and
can be processed by POD and DEIM.

Remark 1 The iterations (11) do not exactly correspond to the solution procedure applied in the OpenFOAM solvers.
For example, the influence of the mesh non-orthogonality on the solution procedure is not mentioned. Consequently,
the matrix A and vector b in (12) are not actually constructed via the given formulas. Instead, they are obtained from
fvm::laplacian(rAtU(), p) and fvc::div(phiHbyA), respectively. Still, the overal structure of A and b is
as described above.

To reduce the order of (12) via the proper orthogonal decomposition and the discrete empirical interpolation, we need to
have available the following data (full order system snapshots),

S =
{
phi := ph(µi),U

h
i := Uh(µi)

}n
i=1

. (13)

Note that the matrix A in (12) depends on the value of the parameter µ. Hence, only matrices A(µ) for µ ∈ {µi}ni=1

are available during the reduced order model construction. The matrix A(µ) for µ /∈ {µi}ni=1 has to be approximated
via interpolation. Let us denote [A]i the interpolated matrix. If the linear interpolation is applied to compute [A]i(µ),
then 〈[A]iψj ,ψi〉 = [〈Aψj ,ψi〉]i and it is possible to pre-compute the reduced system matrices during the reduced order
model construction.

Remark 2 The linear interpolation is used to evaluate [A`]i(µ) for µ /∈ {µi}ni=1. Let us order the values of µ at which
we saved the snapshots S as µ1 < µ2 < · · · < µn. Because of the applied linear interpolation, the generated reduced
order model can be used only for µ ∈ [µ1, µn].



The 13th OpenFOAM Workshop (OFW13), June 24-29, 2018, Shanghai, China

Optimal FOM snapshot selection

We study the dependence of the solution [U, p] to the system (1) on the parameter µ ∈ D ⊂ R. Let us assume that we
have a prepared reduced order model. Now, let us introduce µu, the vector of parameter values for which the full order
model was already evaluated. Mind that the current ROM is based on snapshots of the full order model solution computed
for µ ∈ µu. Let µ denote the vector of parameter values of interest for which the FOM was not yet evaluated. We want
to find the best possible µ̃ ∈ µ to include in µu. In other words, we seek such µ̃ ∈ µ that expansion of the current matrix
of snapshot by the FOM snapshot computed for µ̃ will improve the most possible the quality of the resulting ROM.
We propose to use the discretized continuity error and define a cost function

Scont =
∑
P∈Ωh

∣∣∣∣∣∣
∑
f

Φrom
f

∣∣∣∣∣∣ , Φrom
f = Sf ·Urom , (14)

where Sf is the face-area vector of the face f . Note that (14) corresponds to a sum of all the local continuity errors in the
finite volume mesh Ωh. Based on numerical experiments, we found that it is suitable to incorporate into the cost function
the distance of the current tested parameter to the nearest parameter already included in the snapshots. The modified cost
function is

Snn
cont = dqnnScont , (15)

where dnn marks the distance of the tested parameter µ̃ to its nearest neighbor in µu. The power q may be used to adjust
the importance of dnn for the final value of Snn

cont.
The next value of the parameter to evaluate the full order model for, µ̃ ∈ µ, can be found as,

µ̃ := argmax
µ∈µ

Scont(µ) or µ̃ := argmax
µ∈µ

Snn
cont(µ) (16)

The reduced order model may be used to predict the initial guess for p and U for SIMPLE iterations. The proposed
approach to the evaluation of a parametric study with ROM predictor is summarized in Algorithm 1.

Algorithm 1 Parametric study evaluation with POD-DEIM based predictor
Require: Vector of parameters of interest µ = [µ1, . . . , µd]

T, µ1 < µ2 < · · · < µd, target value of the cost function, εS
1: Evaluate FOM at µ1 and µd;
2: Set µu := [µ1, µd];
3: Set µ := µ\µu;
4: while µ 6= ∅ do
5: Construct ROM from snapshots available for µu;
6: for each µ ∈ µ do
7: Evaluate ROM at µ prom(µ) and Urom(µ);
8: Evaluate Scont(µ) from (14);
9: end for

10: if maxµ̃∈µ{Scont(µ̃)} < εS then BREAK; end if
11: Set µ̃ := argmaxµ̃∈µ{Scont(µ̃)};
12: Evaluate FOM at µ̃;
13: Set µu := [µu, µ̃];
14: Set µ := µ\{µ̃};
15: end while
16: for each µ ∈ µ do
17: Evaluate ROM at µ prom(µ) and Urom(µ);
18: Evaluate FOM at µ with prom(µ) and Urom(µ) as initial guess;
19: end for
20: return Parametric study of FOM

Numerical example

The proposed approach was tested on the cavity tutorial distributed with the core OpenFOAM installation [5].
The changed parameter was the flow Reynolds number Re, which was alternated via the changes in the viscosity of the
considered fluid. The tested Reynolds numbers ranged from 1 to 10000.
In Figure 1, we depict a comparison of the number of SIMPLE iterations needed to obtain a FOM solution with the
same level of accuracy. The compared cases are (i) a CFD simulation without any a-priori pressure and velocity fields
initialization, (ii) a simulation with the initial guess predicted by a ROM of dimension ` = 6 and the snapshots selected
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Figure 1: Comparison of the number of SIMPLE iterations needed for the simulation to converge from ROM predicted initial
guess of pressure and velocity fields and from a uniform fields initialization. The total number of SIMPLE iterations performed
is either 68677 or 99637 in the case of ROM predicted initial guess (it depends on the used cost function) and 126571 otherwise.

via Algorithm 1 and the cost function (14), and (iii) a simulation with the initial guess predicted by a ROM of dimension
` = 6 and the snapshots selected similarly as in (ii), but with the cost function (15).
As it may be seen from Figure 1, when the cost function Snn

cont was applied, we were able to achieve speed-up of almost
two. However, we would like to mention two things. First, the selected range of Reynolds numbers to be simulated is
rather large – the studied parameter changes by four orders of magnitude. For most of the practical applications, the range
of parameters of interest will be significantly more narrow and the results of the POD-DEIM predictor might be better.
Second, using the cost function Snn

cont defined by (15) instead of Scont introduced in (14) might seem beneficial from the
point of view of the final computation speed up. Nevertheless, it seems that the optimal value of the power q in (15)
is problem-dependent and we do not have any universally valid estimate for it. In practice, we are not interested in the
maximal possible speed up of the calculation but in the actual results of the parametric study. Hence, it does not make
much sense to find the optimal value of q for each studied case.
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