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Why to study rivulets
Numerous applications in mass transfer and reaction engineering

[Sulzer ChemTech]

Hydrodynamics
• Fuel cells

– water management inside
PEMFC fuel cells

• Aerospace engineering
– in flight formation of rivulets

on plane wings

Gas-liquid interface
• Packed columns

– wetting performance
– mass transfer coefficients

• Catalytic reactors
– wetting of the catalyst
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Why to start with CFD
Verification of derived simplified models for spreading rivulet simulation

Derived simplified models
• Gas-liquid interface size

calculation
• Velocity field approximation
• Liquid flow rate evolution

Available experimental data
• Gas-liquid interface size

measurements using LIF
method

• No data for velocity field

Exp. set up CAD
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Talk outline
Two parallel approaches to CFD simulations using OPENFOAM

Original geometry and INTERFOAM (IF) solver

• Geometry created using CADs of the experimental set up .
• 3D problem for simulation.
• Used solver based on FVM and VOF.

Simplified geometry and REACTINGPARCELFILMFOAM (RPFF)
solver
• Geometry simplified for the problem to be reducible to 2D .
• Used solver specialized for film type flows.

Outline (both cases presented at the same time)
Geometry and Meshing BC and Algorithms Results
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Geometry and Meshing
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Geometry based on experimental set up
Experimental set up was converted to 3D, computation domain is a negative of it
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Simplified geometry
Geometry and direction of liquid inlet was changed to enable problem reduction to 2D

Changes
• Up-most 10 mm including

liquid inlet ommitted.
• Triangular liquid inlet

perpendicular to the plate
→ rectangular liquid inlet
parallel to the plate.

Outcome
• Geometry suitable for use

with RPFF solver.
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Meshing
Tetragonal 3D mesh and scaled rectangular 2D

Property IF RPFF

Length 310 mm 300 mm
Width 150 mm 150 mm
Height 10 mm –

Element type tetrahedrons rectangles
# of elements 162 709 86 400
Algorithm NETGEN1D2D3D BLOCKMESH

Software SALOME OPENFOAM
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Meshing
Tetragonal 3D mesh and scaled rectangular 2D mesh

IF mesh RPFF mesh
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Algorithms and BC
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Used coordinate system
Cartesian coordinate system and basic notations

Notations

a[m] . . . . . .half-width of the rivulet
h[m] . . interface position function
x, y, z[m] . . . . . coordinate system

α[−] . . . . . . plate inclination angle
β[−] . . . . . .dynamic contact angle
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Solved equations
Isothermal case, incompressible newtonian fluids, flow driven by gravity

Momentum and continuity equations

ut +∇ · (uu) =
1

ρ

(
−∇p+∇ ·

(
µ
(
∇u+∇uT

))
+ Fst + Fb

)
∇ · u = 0

Advection equation for gas-liquid interface (GLI)

∂th̃+ u · ∇h̃ = 0

Notations

u[m s−1] . . . . . . . . . . . . . . velocity
µ[Pa s] . . . . . .dynamic viscosity
ρ[kg m−3] . . . . . . . . . . . . . density

Fst [N] . . surface tension force
Fb [N] . .all acting body forces
h̃[−] . . . . .GLI tracking function
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interFOAM
Description of the solver

Solver description (from the source code)
Solver for 2 incompressible, isothermal immiscible fluids using
a VOF (volume of fluid) phase-fraction based interface
capturing approach.

Solver set up

Algorithm FVM (PIMPLE) + VOF
Solver u Gauss-Seidel
Solver pρgh GAMG
Solver pcorr PCG (GAMG)
Solver h̃ smoothSolver (symGaussSeidel)
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reactingParcelFilmFOAM
Description of the solver

Solver description (from the source code)
Transient PIMPLE solver for compressible, laminar or turbulent
flow with reacting Lagrangian parcels, and surface film
modeling.

Solver set up

Algorithm FVM (PIMPLE)
Solver u smoothSolver (symGaussSeidel)
Solver pρgh smoothSolver (symGaussSeidel)
Solver h smoothSolver (symGaussSeidel)
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Finite Volume Method
Transport equation has to be satisfied in the integral form over VP around P

Standard form of transport equation for scalar property φ

∂ρφ

∂t
+∇ · (ρuφ)−∇ · (ρΓφφ) = Sφ(φ)

Integral form of transport equation for φ

∫ t+∆t

t

[
∂

∂t

∫
VP

ρφ dV +

∫
VP

∇ · (ρuφ) dV −
∫
VP

∇ · (ρΓφφ) dV

]
dt

=

∫
VP

Sφ(φ) dV

P . centroid of the control volume VP . . . . . control volume around P

Centroid position:

VPxP =

∫
VP

xdV  0 =

∫
VP

(x− xp) dV
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VOF method
Using Volume of fluid method to track the rivulet gas-liquid interface[1, 2]

ut +∇ · (uu) =
1

ρ

(
−∇p+∇ ·

(
µ
(
∇u+∇uT

))
+ Fst + Fb

)
∂th̃+ u · ∇h̃ = 0

ρ = ρ1 + h̃ (ρ2 − ρ1) , µ = µ1 + h̃ (µ2 − µ1)

Fst = γκδ~n = γκ∇h̃
Fb = (ρg sinα, 0, ρg cosα)T
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PIMPLE algorithm
Combination of SIMPLE and PISO algorithms

SIMPLE - Semi-Implicit Method for Pressure-Linked Equations
1 Guess pressure field, p∗

2 Solve discretized momentum equations and get u∗

3 Calculate pressure and velocity corrections p′, u′

4 p∗ = p∗ + αp′, under-relaxation, α < 1

5 Repeat 2 – 4 until convergence

PISO - Pressure Implicit with Splitting of Operators

• SIMPLE extended by further corrector step p, u

PIMPLE
• Continuity equation is solved outside of PISO loop
• Velocity field is found in SIMPLE mode
• Pressure field is found in PISO mode
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Used boundary conditions

Quantity Boundary IF RPFF

u[m s−1] plate u+ λ∇u = 0 u+ λ∇u = 0
liquid inlet u = const. u = const.

liquid outlet ∇u = 0 ∇u = 0
other u = 0 u = 0

pρgh, [−] liquid outlet pρgh = const. pρgh = const.
other calculated calculated

h̃[−] liquid inlet h̃ = 1 –
plate β = fH

(
Ca+ f−1H (βeq)

)
–

Ca = uclµ /γ –
other ∇h̃ = 0 –
other calculated –

h[m] liquid inlet – h = const.
other – ∇h = 0
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Results
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Experimental results
Silicon oil, µ .

= 10−2 Pa s, γ
.
= 10−2 Nm−1 ρ

.
= 103 kgm−3, α = π/4, Q = 2.4ml s−1
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reactingParcelFilmFOAM
Silicon oil, µ .

= 10−2 Pa s, γ
.
= 10−2 Nm−1 ρ

.
= 103 kgm−3, α = π/4, Q = 2.4ml s−1

Martin Isoz – UCT Prague



Introduction Geometry and Meshing Algorithms and BC Results Conclusions Discussion

reactingParcelFilmFOAM
Detail of rivulet without underlying wetting film and random contact angle
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Conclusions and Outlook
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Conclusions and Outlook
No method for accurate spreading rivulet modeling is implemented in OPENFOAM

interFoam solver

• Uses physically correct implementation of force balance at the
three phase line

• Unrealistic demands on mesh refinement

reactingParcelFilmFoam solver

• Suitable for thin film modeling

• Contact line movement is modeled based on random contact
angle

• Gives reasonable and physically defensible results only for
spreading on wetted plate (no three phase line force balance is
needed)
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Outlook
Provide suitable implementation for modeling of a rivulet spreading on non-wetted
plate

Implement interFoam contact angle modeling in
reactingParcelFilmFOAM
• Implement contact angle modeling based on Kistler

model[5] in reactingParcelFilmFoam solver

β = fH
(
Ca+ f−1H (βeq)

)
, Ca = ucl

µ

γ
,

where fH is Hoffman function
• Such an implementation is available for interFoam solver

and may be reused for reactingParcelFilmFoam
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interFOAM – Numerically unstable
Silicon oil, µ .

= 10−2 Pa s, γ
.
= 10−2 Nm−1 ρ

.
= 103 kgm−3, α = π/4, Q = 2.4ml s−1
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Modeling three phase lines
A very fine mesh is needed in contact line region

Thin film governing equation - outer and inner

ht +
γ

3µ

∂

∂a
(h3haaa) = 0, ht +

1

3µ

∂

∂a

[(
h3 + 3λh2

)
γhaaa

]
= 0

Consequence
For being able to accurately predict the movement of three
phase line a very fine mesh is needed in contact line region
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