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Introduction



Research motivation
Reducing the computational cost of modeling of complex systems
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Problem setting
Modeling of large systems of differential equations

Original system

ẏ = Ay + f(t, y), y(t) ∈ Rm, y(0) = y0, t ∈ [0, T ],

system matrix . . . A ∈ Rm×m,

nonlinearities . . . f(t, y) ∈ Rm

Reduced-order system

η̇` = A`η` + f `(t, η`), η`(t) ∈ R`, η`(0) = η`0, t ∈ [0, T ],

system matrix . . . A` ∈ R`×`,

nonlinearities . . . f `(t, η`) ∈ R`

gain . . . `� m
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Basic principles of
Model order reduction



Prerequisities and basic notions
Introduce the Galerking ansatz and Fourier modes

• Prerequisities:

ẏ = Ay + f(t, y), y(t) ∈ Rm, y(0) = y0, t ∈ [0, T ]

y(t) ∈ V = span{ψj}dj=1 ∀t ∈ [0, T ]

Ψ = {ψj}dj=1 . . . orthonormal, POD basis

y(t) =

d∑

j=1

〈y(t), ψj〉W ψj , ∀t ∈ [0, T ], W . . .appropriate weights

• Ansatz for Galerkin projection, ` < d

y`(t) :=
∑̀

j=1

〈y`(t), ψj〉W ψj , ∀t ∈ [0, T ], η`j(t) := 〈y`(t), ψj〉W

• Put the above together, !! ψj ∈ Rm, j = 1, . . . , `, m > ` !!
∑`
j=1 η̇

`
jψj =

∑`
j=1 η

`
jAψj + f(t, y`(t)), t ∈ (0, T )

y0 =
∑`
j=1 η

`
j(0)ψj
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Reduced order model
Construct a corresponding model of reduced order (ROM)

• Assume, that the above holds after projection on
V ` = span{ψj}`j=1, remember that 〈ψj , ψi〉W = δij and write,

η̇`i =
∑̀

j=1

η`j〈Aψj , ψi〉W + 〈f(t, y`), ψi〉W , 1 ≤ i ≤ l and t ∈ (0, T ]

• Define the matrix A` = (a`ij) ∈ Rl×l with a`ij = 〈Aψj , ψi〉W
• Define the vector valued mapping η` = (η`1, . . . , η

`
l )

T : [0, T ]→ R`

• Define the non-linearity f ` = (f `1 , . . . , f
`
l )T : [0, T ]→ R`, where

f `i (t, η) =

〈
f


t,

∑̀

j=1

ηjψj


 , ψi

〉

W

• Introduce the IC, η`(0) = η`0 = (〈y0, ψ1〉W , . . . , 〈y0, ψ1〉W )T

• Write the ROM, η̇` = A`η` + f `(t, η`), for t ∈ (0, T ], η`(0) = η`0
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Proper Orthogonal Decomposition
SVD based technique for model order reduction

Algorithm 1 POD basis of rank ` with weighted inner product
Require: Snapshots {yj}nj=1, POD rank ` ≤ d, symmetric positive-

definite matrix of weights W ∈ Rm×m
1: Set Y = [y1, . . . , yn] ∈ Rm×n;
2: Determine Ȳ = W 1/2Y ∈ Rm×n;
3: Compute SVD, [Ψ̄,Σ, V̄ ] = svd(Ȳ );
4: Set σ = diag(Σ);
5: Compute ε(`) =

∑`
i=1 σi/

∑d
i=1 σi;

6: Truncate Ψ̄← [ψ̄1, . . . , ψ̄l] ∈ Rm×`;
7: Compute Ψ = W−1/2Ψ̄ ∈ Rm×`;
8: return POD basis, Ψ, and ratio ε(`)

Notes:
• All the operations on W have to be cheap, including its inversion.
• Do not perform the full SVD, Σ ∈ Rd×d, d = rank(Ȳ ).
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Treatment of non-linearities I
Identify the problem and provide a remedy

• Identify the problem,

f `i (t, η) =

〈
f


t,

∑̀

j=1

ηjψj


 , ψi

〉

W

. . .
∑̀

j=1

ηjψj ∈ Rm← FO

• Approximate the non-linearities, f(t, y) via POD basis, Φ,

b(t) := f(t,Ψη`) ≈
p∑

k=1

φkck(t) = Φc(t) . . . Galerkin ansatz

• Approximate f `(t, η`) through Ψ,W,Φ,

f `(t, η`) = ΨTWf(t,Ψη`) = ΨTWb(t) ≈ ΨTWΦc(t)

• Current situation,

c(t) ∈ Rp but c . . .new unknown
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Discrete Empirical Interpolation Method
POD & Greedy algorithm based method for handling non-linearities

Algorithm 2 DEIM
Require: p and matrix F = [f(t1, y1), . . . , f(t1, y1)] ∈ Rm×n

1: Compute POD basis Φ = [φ1, . . . , φp] for F
2: idx← arg maxj=1,...,m|(φ1){j}|;
3: U = [φ1] and~i = idx;
4: for i = 2 to p do
5: u← φi;
6: Solve U~ic = u~i;
7: r ← u− Uc;
8: idx← arg maxj=1,...,m|(r){j}|;
9: U ← [U, u] and~i← [~i, idx];

10: end for
11: return Φ ∈ Rm×p and index vector,~i ∈ Rp

Notes:
• Most of the computational cost is hidden on line 6.
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Treatment of non-linearities II
Modify ROM in order to reduce the computational cost of its evaluation

• Plug in the matrix
P := [e~i1, . . . , e~ip] ∈ Rm×p, e~ik = (0, . . . , 0, 1, 0, . . . , 0)T ∈ Rm,

PTΦc(t) ≈ PTb(t), ← c(t) ∈ Rp, Φ ∈ Rm×p, b(t) ∈ Rm

det(PTΦ) 6= 0 =⇒ c(t) ≈ (PTΦ)−1PTb(t) = (PTΦ)−1PTf(t,Ψη`)

• If f(t,Ψη`) is pointwise evaluable,

(PTΦ)−1PTf(t,Ψη`) = (PTΦ)−1f(t, PTΨη`), PTΨη` ∈ Rp

• Write the final ROM

η̇` = A`η` + f `(t, η`), for t ∈ (0, T ], η`(0) = η`0,

where
f `(t, η`) = ΨTWΦ(PTΦ)−1f(t, PTΨη`)
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Link with OpenFOAM



Basics of OpenFOAM
FVM based solver for CFD applications, pressure-linked p− U equations

Rewrite OpenFOAM discretization as above studied problem

• With ∆Ωh := diag(δΩhi ) ∈ Rm×m a FVM semi-discretized
problem can be written as,

∆Ωhẏ + Lh(t, y) = 0 =⇒ ẏ = −(∆Ωh)−1Lh(t, y),

Lh = −Ã(t)y − b̃(t, y) . . . FVM spatial discretization operator
• It is possible to formally write (almost) the same system as

before,

ẏ = A(t)y+b(t, y), A(t) = (∆Ωh)−1Ã(t), b(t, y) = (∆Ωh)−1b̃(t, y)

• The time dependence of A is a result of the linearization process.
E.g. ∇ · (uk ⊗ uk) ≈ ∇ · (uk−1 ⊗ uk)

• The POD-DEIM approach to ROM creation will have to be
slightly modified
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Modifications to POD-DEIM ROM creation
Extended snapshots and interpolation

Address the risen difficulties
• Needed snapshots, {(yi, Ai, bi)}ni=1, Ai ∈ Rm×m, i = 1, . . . ,m

but Ai are sparse matrices, with ∼ 5m non-zero elements =⇒
∼ 5m floats and ∼ 8m integers will be stored.

• A way for ROM evaluation between the stored snapshots is
needed =⇒ I need to interpolate between Ai−1 and Ai and bi−1
and bi, i = 2, n

• Simplest case: linear interpolation,

$(t) =
t− ti−1
ti − ti−1

, Â(t) = $(t)Ai−1 + (1−$(t))Ai

Â`(t) = ΨTWÂ(t)Ψ = ΨTW ($(t)Ai−1 + (1−$(t))Ai) Ψ =

= $(t)ΨTWAi−1Ψ+(1−$(t))ΨTWAiΨ = $(t)A`i−1 + (1−$(t))A`i

• Same trick can be done for b(t, y) and after the ROM creation, I
do not need to store the full data.
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Example 1 – Passive scalar advection
Phase-volume fraction advection in multiphase flow

interFoam – Volume-of-Fluid model for multiphase flow

αt +∇ · (uα) +∇ · (urα(1− α)) = 0

αt+Lhα(t, α) = 0→ αt = Aα(t)α+bα(t, α)→ η̇`α = Â`α(t)η`α+ b̂`α(t, η`α)

Wanted: ẏα = Aα(t)yα + bα(t, y)

Example of implementation in OpenFOAM
fvm::div( phi, alpha1, alphaScheme )

+ fvc::div(
-fvc::flux(

-phir, scalar(1)-alpha1, alpharScheme
),
alpha1, alpharScheme

) == 0

Link: fvm→ Aα(t), fvc→ bα(t, y)
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Example 1 – Passive scalar advection
Numerical results
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POD-DEIM ROMs for Navier-Stokes equations
A brief discussions of specifics linked to solving NS in OpenFOAM (or other FVM solver)

Saddle-point problem
ut +∇ · (u⊗ u)−∇ · (ν∇u) = −∇p̃+ f̃

∇ · u = 0
 

(
M NT

N 0

)(
uh

ph

)
=

(
fh

0

)
Schurr complement based pressure equation

NM−1NTph = NM−1fh, uh = M−1(NTph − fh)

Jacobi iterations with Schur-complement based p-U coupling

u∗ ←Mu∗ = f −NTpj−1, M = D + L+ U

pj ← ND−1NTpj = ND−1 (f − (L+ U)u∗)

uj ← D−1
(
f − (L+ U)u∗ −NTpj

)

At convergence

ND−1NTp = ND−1 (f − (L+ U)u∗) ≈ NM−1NTp = NM−1f

u ≈ D−1 (f − (L+ U)u∗)−D−1NTp

=⇒ ”Natural” would seem to construct ROM for p ⇐=
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Construction of ROM for p
Implementation of pressure equation in OpenFOAM and construction of ROM based on it

Notation

D−1 → rAU and D−1(f − (L+ U)u∗)→ HbyA (in oF, ∗Eqn.A()→ D)

Implementation of pressure eqauation in OpenFOAM
fvm::laplacian(rAU, p) == fvc::div(HbyA)

Wanted: ẏp = Ap(t)yp + bp(t, yp)

Implicit definition of time derivative for pressure

∇ · (u⊗ u)−∇ · (ν∇u) = −∇p̃+ f̃

∇ · u = 0
 

UEqnMORE

D−1
h → rAUMORE

D−1
h (fh − (Lh + Uh)uh∗)→
→ HMOREbyAMORE

fvm::laplacian(rAUMORE, p) == fvc::div(HMOREbyAMORE)

Link: fvm→ Ap(t), fvc→ bp(t, yp)
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Reconstruction of the velocity field
Create ROM or expand snapshot

Expansion of snapshots for pressure

Standard approach snapshots: S = {yk,i, Ak,i, bk,i}ni=1, k = p, U
Expanded snapshots for pressure:

Se = {yp,i, Ap,i, bp,i, rAUMOREi, HMOREbyAMOREi}
n
i=1

Storage

S . . .n [(1 + 3)m+ (5 + 5)m+ (1 + 3)m] ≈ 15nm values
Se . . .n(m+ 5m+m+ 1m+ 3m) ≈ 11nm values

Computational cost

S . . .∼ 4n calculations of ΨTWA(t)Ψ, evaluation of ∼ 4 ROMs
Se . . .
∼ n calculations of ΨTWA(t)Ψ,
∼ n calculations of ΨTWrAUMOREiΨ,
∼ n calculations of ΨTWHMOREbyAMOREiΨ,
evaluation of 1 ROM + interpolation between rAUMOREi

ROM and between
HMOREbyAMOREi

ROM

Ui ≈ HMOREbyAMORE
ROM + rAUMORE

ROM∇pROM
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Example 2 – Von Karman vortex row
Validation of the approach
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Applications



Real-life applications
ROM is a tremendous tool for parametric studies or repeated model evaluations

[Sulzer ChemTech]

Importance

• Chemical industry creates
mixtures but sells ”pure species”
(e.g. oil)
• 2014, 3% of energy consumption

of the USA was due to the
separation columns

Challenges

• Multiphase flow→ non-steady
process
• Complex geometry
• Simultaneous heat and mass

transfer
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Semi-industrial scale CFD
Steady-state RANS simulation of flow in complex geometry

Challenge: Geometry of structured packing
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Semi-industrial scale CFD
Steady-state RANS simulation of flow in complex geometry

Geometry: Mellapak 250.X structured packing
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Semi-industrial scale CFD
Steady-state RANS simulation of flow in complex geometry

Gas flow simulation: Incompressible steady state RANS simulation
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Semi-industrial scale CFD
Steady-state RANS simulation of flow in complex geometry

Comparison with experimental data: [Haidl, J. UCT Prague]
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Semi-industrial scale application
ROM based initial guess prediction for full NS solver (simpleFoam)

Full case: Flow through the Mellapak 250.X packing
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Semi-industrial scale application
ROM based initial guess prediction for full NS solver (simpleFoam)

Full case: Predicted vs. converged solution in L1
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Semi-industrial scale application
ROM based initial guess prediction for full NS solver (simpleFoam)

Comparison with experimental data: [Haidl, J. UCT Prague]
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Conclusions
POD-DEIM ROMs backed by OpenFOAM CFD machinery

Currently available

• Extended snapshot preparation for simpleFoam and pimpleFoam

• Unfinished: Extended snapshot preparation for interFoam

• Python module for ROM creation based on prepared outputs from
OpenFOAM

Advantages

• Snaphots are created during postprocessing - simulations can be ran in
parallel

• All the OpenFOAM capabilities are accessible (including e.g. MRF or
turbulence modeling)

Disadvantages

• Extended shapshots have to be stored - a lot of data

• Creation of A`
i , i = 1, . . . , n is time consuming
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Next steps
Towards ROM size reduction and multiparametric systems

ROM size reduction: Se selection based on greedy algorithm
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Next steps
Towards ROM size reduction and multiparametric systems

ROM size reduction: Se selection based on greedy algorithm
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Natural weights for FVM problems
Introduction of the L2-norm weighted inner product

• Let us have rather nice functions defined on a nice domain,

ϕ, ϕ̃ ∈ L2(Ω), Ω ⊂ R3 . . . bounded, connected, . . .

• A brief reminder,

〈ϕ, ϕ̃〉L2(Ω) =

∫
Ω

ϕϕ̃ dx, ||ϕ||L2(Ω) =
√
〈ϕ,ϕ〉L2(Ω)

• Denote Ωh a FVM discretization of Ω and δΩh
i the volume of the i-th cell,

Ω ≈ Ωh =
nCells⋃
i=1

Ωh
i , V (Ω) ≈ V (Ωh) =

nCells∑
i=1

δΩh
i

• Introduce a discrete inner product, 〈ϕ, ϕ̃〉L2
h

,

〈ϕ, ϕ̃〉L2(Ω) =

∫
Ω

ϕϕ̃ dx ≈
nCells∑
i=1

∫
Ωh

i

ϕϕ̃dx =

nCells∑
i=1

ϕh
i ϕ̃

h
i δΩ

h
i = 〈ϕ, ϕ̃〉L2

h

• Denote W = diag(δΩh
1 , . . . , δΩ

h
nCells). Hence, 〈ϕ, ϕ̃〉L2

h
= (ϕh)TWϕh.
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Residuals evolution
Comparison of the residuals evolution for Mellapak cases in L0,L1 and L2

Full case: Residuals evolution, from potentialFoam initialized fields
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Residuals evolution
Comparison of the residuals evolution for Mellapak cases in L0,L1 and L2

Full case: Residuals evolution, from ROM predicted fields, L1
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Residuals evolution
Comparison of the residuals evolution for Mellapak cases in L0,L1 and L2

Full case: Residuals evolution, from ROM predicted fields, L2
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