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Abstract
Today, the size of the free interface of a liquid objects spreading on substrates can be ob-
tained through various CFD methods. However, all these methods are computationally very
demanding, thus not very applicable in the day-to-day engineering practice. In the presented
paper, a computationally inexpensive method to determine the size of the gas-liquid interface
of the rivulet flowing down an inclined, wetted plate was derived and verified against the
experimental data.
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1 Introduction

The size of the gas-liquid interface of the rivulet type flow of a liquid, Sg−l, is of the key importance
throughout many areas of chemical engineering, especially the ones concerning the mass transfer
and catalytic reactions [1].

Eventhough Sg−l can be obtained from various CFD methods [1,2], such methods are still
too complex to be used in the engineering practice and too computationally demanding for the
parametric studies of the rivulet free interface behavior.

We will reduce the problem of finding the shape of (g)−(l) interface of the rivulet from solution
of the corresponding system of the Navier-Stokes equations to the repeated solution of one non-
linear algebraic equation. This reduction is based on the combination of the Cox-Voinov law [3] and
the hydrodynamic description of the rectilinear rivulet published by Duffy and Moffat in [4]. This
approach is possible only with the introduction of several simplifying assumptions. The necessary
simplifications are listed below.

The used Cartesian coordinate system as well as the most important symbols are presented in
Fig. 1.

Figure 1: Used coordinate system with the basics of rivulet spreading notation. α is the plate
inclination angle, β and βm are the apparent and the microscopic contact angles, a is the rivulet
half width.

2 Simplifying assumptions

The proposed calculation method for the size of the gas-liquid interface of a rivulet flowing down
an inclined wetted plate was derived under the following simplifications,



1. The studied liquid is Newtonian, ρ, µ and γ are constant.

2. The rivulet profile shape is constant in time. Furthermore, Q is constant not only in time,
but also in all spatial directions.

3. There is no shear between the gas and liquid phases.

4. The liquid velocities in the directions transversal and normal to the plate are negligible in
comparison to the one in its longitudinal direction, u � v ∼ w. The inertial effects can be
neglected in y and z directions.

5. The gravity is the only acting body force.

6. The rivulet is shallow enough for the gravity effects on its interface shape to be neglected.
Also the dynamic contact angles, β = β(x) are assumed small all along the rivulet.

7. There is a thin precursor film of height l on the whole studied surface. Thus there is no
contact angle hysteresis and βm = 0. The height of the precursor film, l, can also be taken
as the intermediate region length scale well separating the inner and outer solution for the
profile shape [3].

3 Proposed method

With above listed simplifying assumptions, the parallel between the spreading of a rivulet along
the inclined plate and the spreading of a static objects in time can be found.

In the review [3], the Cox-Voinov law for the case of a symmetric 2D object spreading on a
horizontal substrate was derived in the form,
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with a(t) being the object characteristic dimension. For the case of the narrow, axially symmetric
stripe of a liquid, a(t) represents its half width.

The resulting equation is a first order ordinary differential equation for two unknown functions,
β(t) and a(t).

In the case of a steady rivulet of a liquid flowing and spreading down an inclined plate, the
time coordinate in (1) can be transformed in the spatial coordinate, x.

Furthermore, for the case of an uniform steady rivulet, with negligible effects of the gravity on
the interface shape, Duffy and Moffat have given the solution of the Navier-Stokes equations [4].
Their solution yields the following equations describing the shape the (g) − (l) interface of such a
rivulet,
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The importance of the solution of Duffy and Moffat for the problem of finding the (g) − (l)
interface shape of a non-uniform rivulet is, that it gives an explicit relation between the rivulet
half-width, a, and its dynamic contact angle, β. Substituting a from (3) to (1), one arrives at
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Solution of (4) yields an implicit relation for β(t),
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The integration constant, C, is specified by the initial condition, β(0) = β0,
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Let us take the three phase point of one transversal cut through the rivulet and denote it as τ .
The equation (5) describes the movement of τ in the direction of the y axis in time and the effects
of this movement on the shape of the 2D (g) − (l) interface of the chosen transversal cut.

For the description of the rivulet interface shape along the plate, the relation between the
movement of τ in time and the movement of the chosen transversal cut along the plate has to be
established.

The presented transformation from time to spatial coordinate arises from the last assumption
in Simplifying assumptions. We assume the presence of a precursor film of thickness equal to the
intermediate region length scale, l, on the whole plate. Neglecting the long-range intermolecular
forces, this precursor film can be taken as a free falling film. The point τ is then considered not to
be directly on the three phase line, as there is, in fact none, but in the height l above the plate.
Hence τ is moving along x axis with the speed of

uτ =
ρg sinα

2µ
l2. (7)

Using this estimate for the speed of τ , the needed transformation is,

t = $x, $ =
2µ
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. (8)

Substitution for t from (8) to (5) yields the equation for the shape of the rivulet (g) − (l)
interface in the dependence on the plate longitudinal coordinate, x,
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The proposed method for calculation of the Sg−l is based on the approximation of the spreading
rivulet by N consecutive subrivulets of the constant width.

Algorithm:
For each subrivulet, placed at coordinate iδx from the plate top do: i = 1, 2, . . . , N, δx = L/N

1. Solve the equation (9) and obtain βi.

2. Substitute for the βi in (3) and get the current rivulet half width, ai.

3. Calculate the Sg−l for the i-th subrivulet using (2) from,

Sig−l = 2δx

∫ ai

0

hi(y)d y (10)

Calculate the Sg−l as sum of the sizes of the (g) − (l) interface of all the subrivulets,

Sg−l =

N∑
i=1

Sig−l. (11)

4 Results and Discussion

For the case of a liquid spreading over a prewetted plate, the proposed method for Sg−l calculation
provides results within a tolerance of 5% compared to the experimental data. The comparison
between the experimental and theoretical results for such a case is in Fig. 2. The solid curve was
obtained by fitting the experimental results using the above described algorithm with l kept as
the adjusted parameter. The dot-dashed curve was obtained from the proposed method with l
determined on the basis of the experiment.



0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

0.016

0 1 2 3 4 5

S
g
−
l,

[m
2
]

Q, [ml s−1]

fit.: l = 2.81 · 10−5 m
exp.: l = 3.00 · 10−5 m

experimental data

Figure 2: Comparison of resulting Sg−l for fitted l, l determined on the basis of the experiment and
experimental data. Measured system is a silicon oil spreading on a wetted, steel plate, α = 60 ◦.

5 Conclusion

Even with continuous growth of the computing capacity of the modern computers, there is still
need for a simplified solutions to the complex problems of fluid dynamics. Such method for the
calculation of the Sg−l of a rivulet flowing down an inclined, wetted plate was derived and verified
against the experimental data. The presented method can be used for the qualitative study of the
dependence of the Sg−l on the process parameters. Moreover, as the method provides relatively
accurate results, it can be used for the Sg−l estimates in the engineering practice.

Nomenclature
a . . . . . . . . . . . . . . . . half-width of the rivulet, [m]
A,B,C, C̄ . . . . . . . . . . . . . . . constants, [s,−,−,−]
e . . . . . . . . . . . . . . . . . . . . . . . . .Euler’s constant, [−]
g . . . . . . . . . . . .gravitational acceleration, [m s−2]
h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . height, [m]
l . . . . . . . . . intermediate region length scale, [m]
L . . . . . . . . . . . . . . . . . . . . . total rivulet length, [m]
N . . . . . . . . . . . . .number of consecutive cuts, [−]
Q . . . . . . . . . . . . . . . volumetric flow rate, [m3 s−1]
S . . . . . . . . . . . . . . . . . . . . size of the interface, [m2]
t . . . . . . . . . . . . . . . . . . . . . . . . . . time coordinate, [s]
u, v, w . liq. velocity in x, y and z dir., [m s−1]

x, y, z . . . . . . . . . . . . . . . . . . coordinate system, [m]

Greek letters

α . . . . . . . . . . . . . . . . . . . plate inclination angle, [◦]
β . . . . . . . . . . . . . . . . . . .dynamic contact angle, [◦]
γ . . . . . . . . . . . . . . . liquid surface tension, [N m−1]
δ . . . . . . . . . . . . . . . . . . . . . . . . . small difference, [−]
η . . . . .constant defined in the equation (3), [m]
µ . . . . . . . . . . . . . . liquid dynamic viscosity, [Pa s]
$ . . . . . . . . . transformation from t to x, [m−1 s]
ρ . . . . . . . . . . . . . . . . . . . . . . liquid density, [kg m−3]
τ . . . . . . . . . . . contact point for 2D interface, [−]
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