CFD study of gas flow through structured separation columns packings Mellapak 250.X and Mellapak 250.Y

Martin Isoz^{1,2}

¹UCT Prague, Department of mathematics ²Czech Academy of Sciences, Institute of thermomechanics

Topical Problems of Fluid Mechanics, Prague, February 15 – February 17, 2017

Introduction	Applied model	Results	Conclusions

Introduction

Research motivation

Provide usable tools for separation columns modeling

[Sulzer ChemTech]

Importance

- Chemical industry creates mixtures but sells "pure species" (e.g. oil)
- 2014, 3% of energy consumption of the USA was due to the separation columns

Challenges

- Multiphase flow \rightarrow non-steady process
- Complex geometry
- Simultaneous heat and mass transfer

Separation columns modeling

Multiphase flow, simultanous heat and mass transfer

Ø

Mass and momentum balance, N phases

$$\rho_i \frac{\partial}{\partial t} (\mathbf{U}_i) + \nabla \cdot (\rho_i \mathbf{U}_i \otimes \mathbf{U}_i) = \nabla \cdot \tau + F_i, \quad i = 1, \dots, N$$
$$\rho_i = \rho(c_i, T_i), \quad \nabla \cdot (\mathbf{U}_i) = S_i^{\rho} = \sum_{j=1}^M \hat{R}_{i,j}^c$$

Mass transfer, M species

$$\frac{\partial}{\partial t}c_{i,j} + \nabla \cdot (\mathbf{U}_i c_{i,j}) = \nabla \cdot \left(\Gamma_{i,j}^c \nabla c_{i,j}\right) + S_{i,j}^c, \qquad j = 1, \dots, M$$

Heat transfer, N phases

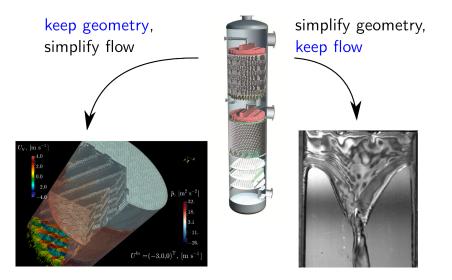
$$\frac{\partial}{\partial t}T_i + \nabla \cdot (\mathbf{U}_i T_i) = \nabla \cdot \left(\Gamma_i^T \nabla T_i\right) + S_i^T, \qquad i = 1, \dots, N$$

Isoz, M., UCT Prague, IT CAS

Mellapak type structured packing Corrugated, perforated sheet of steel equipped with texture

Possible simplifications

Approach the problem from two different sides



Introduction	Applied model	Results	Conclusions

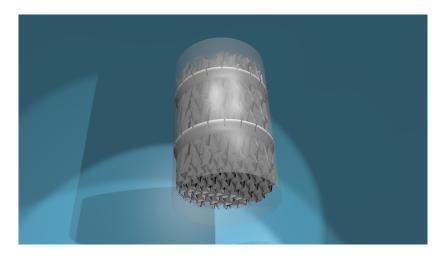
Applied model

Ő

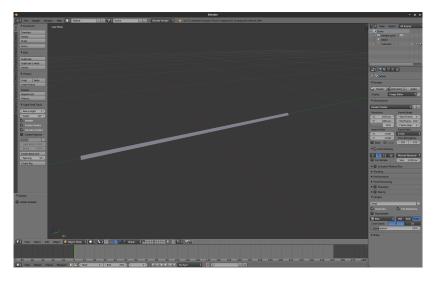
Selected approach: Keep geometry, simplify flow

Ø

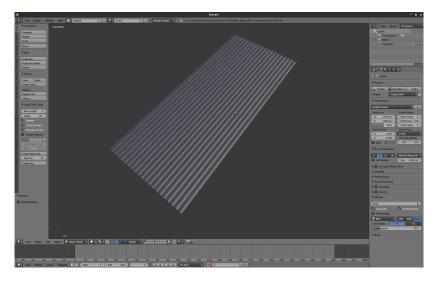
Geometry example: Mellapak 250.X



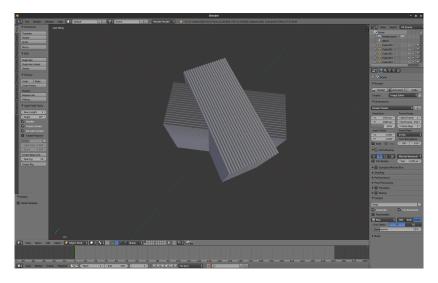
Step 1: Create base packing element



Step 2: Construct one corrugate sheet

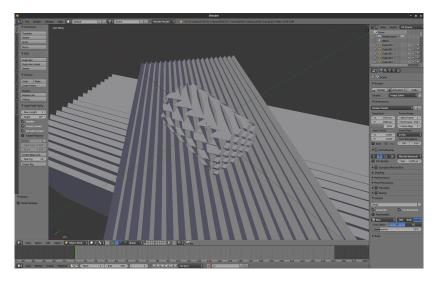


Step 3: Prepare all the needed sheet

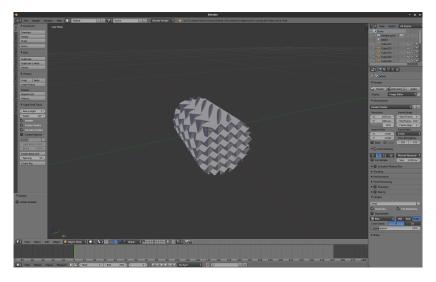


Isoz, M., UCT Prague, IT CAS

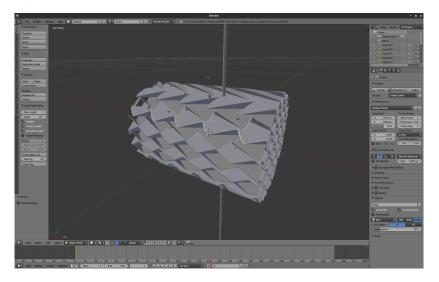
Step 4: Cut out the desired packing shape



Step 4: Cut out the desired packing shape



Step 5: Perforate the packing

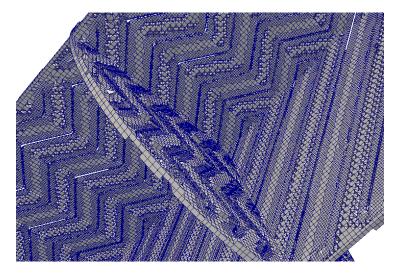


Isoz, M., UCT Prague, IT CAS

Step 6: Finish the packed bed generation

Isoz, M., UCT Prague, IT CAS

Mesh: Unstructured, hex dominated, $nCells \approx 10^6$ /packing element



Navier-Stokes equations $\mathbf{U}_t + \nabla \cdot (\mathbf{U} \otimes \mathbf{U}) - \nabla \cdot \mathbf{T} = -\nabla \tilde{p} + \tilde{f}$ $\nabla \cdot \mathbf{U} = 0$ SST $k - \omega$ model $\mathbf{k}_{t} + \mathbf{U} \cdot \nabla k = \tilde{P}_{k} + \nabla \cdot \left[\left(\nu + \nu_{t} \sigma_{k} \right) \nabla k \right] - \beta^{*} \mathbf{k} \omega$ $\boldsymbol{\omega}_t + \mathbf{U} \cdot \nabla \boldsymbol{\omega} = \tilde{P}_{\boldsymbol{\omega}} + \nabla \cdot \left[\left(\boldsymbol{\nu} + \boldsymbol{\nu}_t \boldsymbol{\sigma}_{\boldsymbol{\omega}, 1} \right) \nabla \boldsymbol{\omega} \right] \dots$ $\cdots + \alpha S^2 - \beta \omega^2 + 2(1 - F_1) \sigma_{\omega,2} \frac{1}{\omega} \nabla k \cdot \nabla \omega$

=	$G(\mathbf{U})$
=	H(p)
=	K(k)
=	$L(\omega)$
on	$\partial\Omega^h$
	= = = on

IG

E

$$\label{eq:U0} \begin{split} \mathbf{U}_0, \tilde{p}_0, k_0, \omega_0, \nu_0 \\ & \text{ in } \Omega^h \end{split}$$

Closer look on boundary conditions

The used mesh is fine enough to omit wall functions

$$\mathcal{S}_{\mathrm{inlet}} = \{(x,y,z) \in \mathbb{R}^3 : x = h_{\mathrm{col}}, y^2 + z^2 \leq r_{\mathrm{col}}^2\}$$

$$\mathbf{U} = (-u_i, 0, 0)^{\mathrm{T}}, \quad \mathbf{S}_f \cdot \nabla p = 0, \quad k = k_0, \quad \omega = \omega_0$$

$$\mathcal{S}_{\text{outlet}} = \{(x, y, z) \in \mathbb{R}^3 : x = -h_{\text{col}}, y^2 + z^2 \le r_{\text{col}}^2\}$$

$$\mathbf{S}_f \cdot \nabla \mathbf{U} = (0,0,0)^{\mathrm{T}}$$
 if $\mathbf{\Phi} > 0, \ \mathbf{U} = (0,0,0)^{\mathrm{T}}$ else

$$p = 0$$

$$\mathbf{S}_f \cdot \nabla k = 0 \text{ if } \mathbf{\Phi} > 0, \ k = k_0 \text{ else}, \quad \mathbf{S}_f \cdot \nabla \omega = 0 \text{ if } \mathbf{\Phi} > 0, \ \omega = \omega_0 \text{ else}$$

$$\mathbf{\Phi} = \mathbf{S}_f \cdot \mathbf{U}$$

 $\mathcal{S}_{\text{wall}} = B \cup \{(x, y, z) \in \mathbb{R}^3 : x = \langle -h_{\text{col}}, -h_{\text{col}} \rangle, y^2 + z^2 = r_{\text{col}}^2 \}$

$$\mathbf{U} = (0, 0, 0)^{\mathrm{T}}, \quad \mathbf{S}_f \cdot \nabla p = 0, \quad \mathbf{S}_f \cdot \nabla k = 0, \quad \mathbf{S}_f \cdot \nabla \omega = 0$$

Isoz, M., UCT Prague, IT CAS

Introduction	Applied model	Results	Conclusions

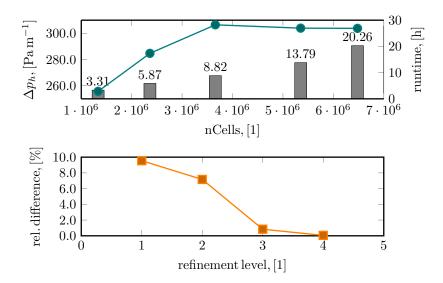
Results

Measurable variable

Due to the apparatus complexity, there is not much to be measured

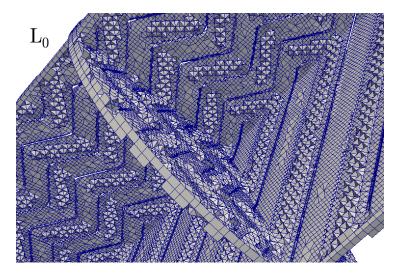
$$\Delta p_h := \frac{p_{\text{above}} - p_{\text{bellow}}}{N_{\text{pk}} H_{\text{pk}}}$$

Main variable of interest is dry pressure loss, Δp_h



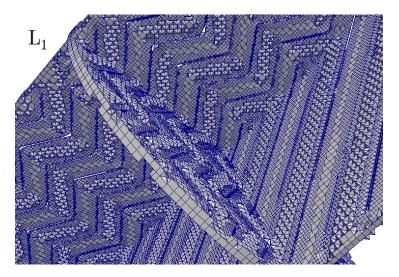
Main variable of interest is dry pressure loss, Δp_h

Mesh sizes: Mesh with $n Cells \approx 1 \cdot 10^6/\text{packing element}$



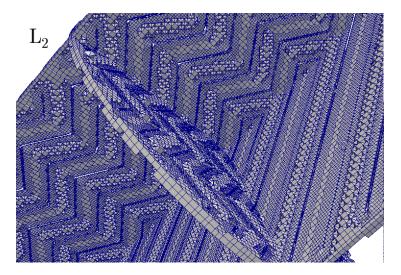
Main variable of interest is dry pressure loss, Δp_h

Mesh sizes: Mesh with $nCells \approx 2.5 \cdot 10^6$ /packing element



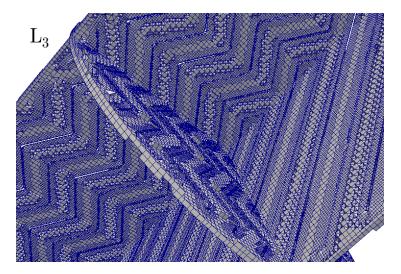
Main variable of interest is dry pressure loss, Δp_h

Mesh sizes: Mesh with $n \mathrm{Cells} \approx 3.8 \cdot 10^6 / \text{packing element}$



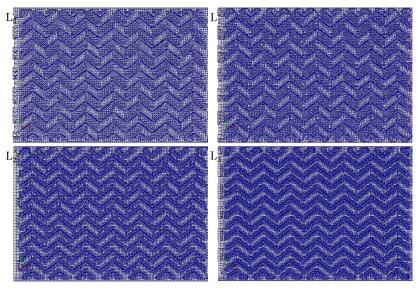
Main variable of interest is dry pressure loss, Δp_h

Mesh sizes: Mesh with $n \mathrm{Cells} \approx 5.3 \cdot 10^6 / \text{packing element}$



Main variable of interest is dry pressure loss, Δp_h

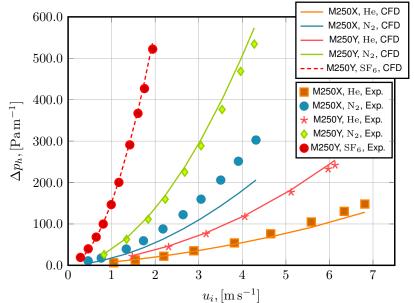
Mesh sizes: Side view on mesh levels 0-3



Isoz, M., UCT Prague, IT CAS

Model validation on experimental data

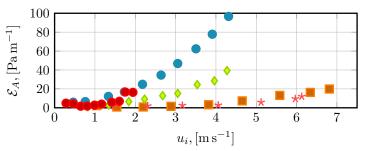
Data measured by Mass Transfer Laboratory at UCT Prague

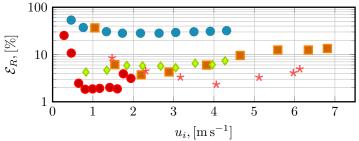


Isoz, M., UCT Prague, IT CAS

Model validation on experimental data

Data measured by Mass Transfer Laboratory at UCT Prague

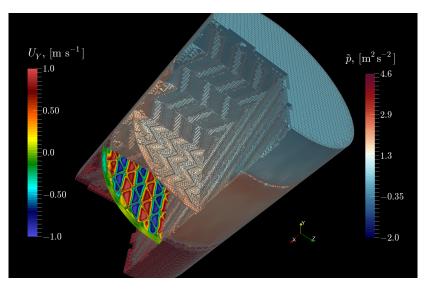




Isoz, M., UCT Prague, IT CAS

Model results Pressure and velocity fields

Result: flow patterns in 1 packing packing element

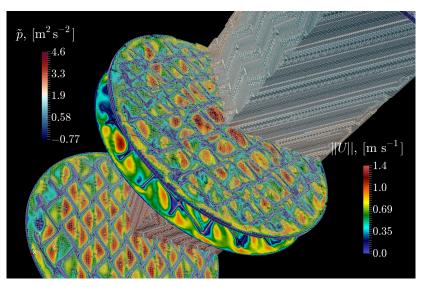


Flow in two packing elements

Flow keeps its structure in most of the packing

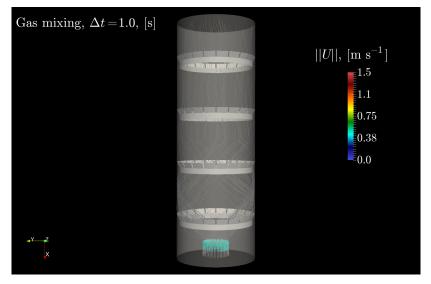
 $\langle \! \rangle$

Simulation: Change of flow at transition between packing elements



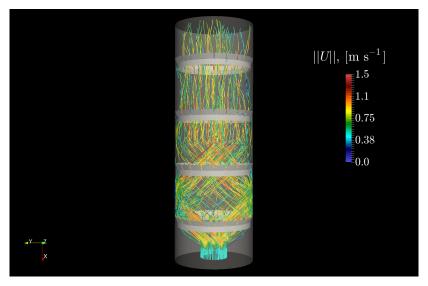
Isoz, M., UCT Prague, IT CAS

Gas mixing in two packing elements



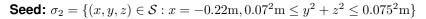
Isoz, M., UCT Prague, IT CAS

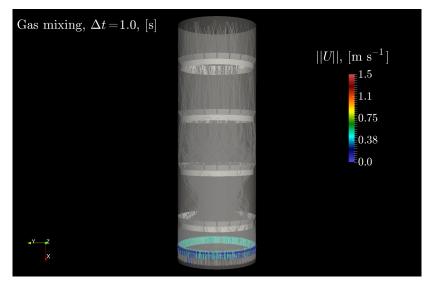
Gas mixing in two packing elements



Isoz, M., UCT Prague, IT CAS

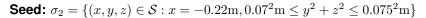
Gas mixing in two packing elements

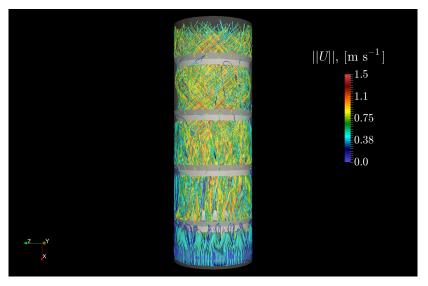




Isoz, M., UCT Prague, IT CAS

Gas mixing in two packing elements

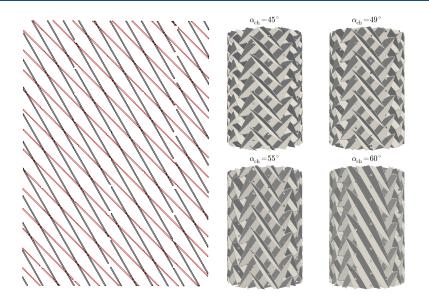




Isoz, M., UCT Prague, IT CAS

Changes in the geometry

Different channel inclination angles and perforation densities



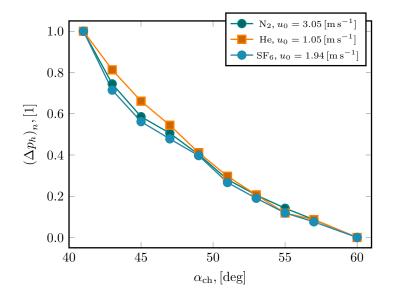
Variable for comparison: Normalized dry pressure loss

$$(\Delta p_h)_n^i := \frac{\Delta p_h^i - \min_{(i)} \Delta p_h}{\max_{(i)} \Delta p_h - \min_{(i)} \Delta p_h} \quad \in \langle 0, 1 \rangle$$

Isoz, M., UCT Prague, IT CAS

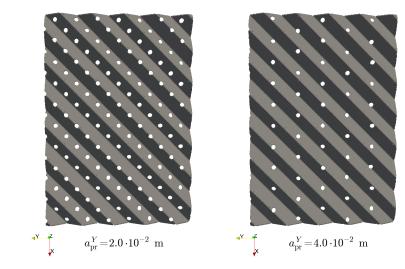
Dry pressure loss estimation

Different channel inclination angles



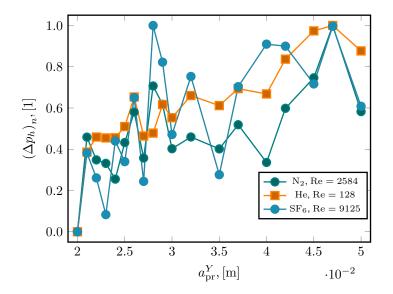
Dry pressure loss estimation

Different perforation density



Dry pressure loss estimation

Different perforation density



Ranges of Δp_h during the simulations

Case	Varied parameter	$\min \Delta p_h$, $\operatorname{Pa} \mathrm{m}^{-1}$	$\max \Delta p_h$, $\operatorname{Pa} \operatorname{m}^{-1}$
N_2	$lpha_{ m ch}$	112.96	439.00
He	$lpha_{ m ch}$	9.00	17.22
SF_6	$lpha_{ m ch}$	172.62	824.03
N_2	$a_{ m pr}^Y$	295.34	310.07
He	$a_{ m pr}^Y$	14.19	14.46
SF_6	$a_{ m pr}^Y$	530.16	543.85

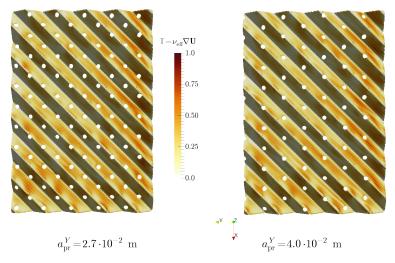
- Channel inclination has substantially larger effect on Δp_h than perforation

Isoz, M., UCT Prague, IT CAS

 $\langle \rangle$

Theory: Flow perturbation in the perforation vicinity

Wall shear stress on the packing

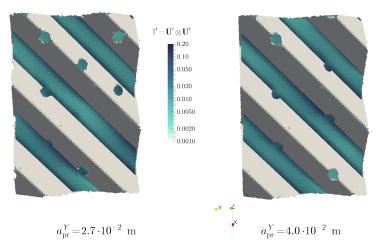


Isoz, M., UCT Prague, IT CAS

TPFM'17, Prague, Feb 15 - Feb 17, 2017, CFD study of gas flow through structured packings; 22/28

Theory: Flow perturbation in the perforation vicinity

Reynolds stress around holes



Isoz, M., UCT Prague, IT CAS

TPFM'17, Prague, Feb 15 - Feb 17, 2017, CFD study of gas flow through structured packings; 22/28

Introduction	Applied model	Results

Conclusions

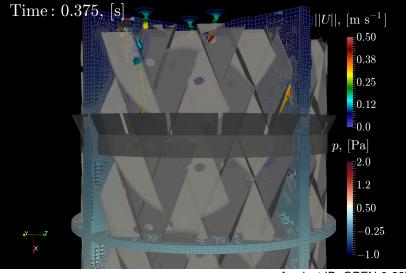
Conclusions

Prepared:

- Algorithm for automatic geometry generation
- Automatized case construction and solution
- Tools for dry pressure loss estimation based on flow and geometry parameters.

To do:

- Axial dispersion in the gas phase
- Different types of structured packings
- Multiphase flows



[project ID: OPEN-9-23]

The work of M. Isoz was supported by the Centre of Excellence for nonlinear dynamic behaviour of advanced materials in engineering CZ.02.1.01/0.0/0.0/15_003/0000493 (Excellent Research Teams) in the framework of Operational Programme Research, Development and Education. Moreover, the author thankfully acknowledges financial support from IGA of UCT Prague, grant numbers A2_FTOP_2016_024 and A1_FCHI_2016_004 and from the Czech Science Foundation, grant number GACR 13-01251S. Finally, the author would like to express his deepest thanks to the Mass Transfer Laboratory of UCT Prague for providing theirs, yet unpublished, experimental data for the model validation.

References

- Haroun, Y. Raynal, L.: Use of computational fluid dynamics for absorption packed column design. *Oil Gas Sc. Technol.*, 71:18, 2016.
- [2] Owens, S. A. Perkins, M. R. Eldridge, R. B. Schulz K. W. Ketcham, R. A.: Computational fluid dynamics simulation of structured packing. *Ind. Eng. Chem Res.*, 52:2032–2045, 2013.
- [3] Amini, Y. Karimi-Sabet, J. Esfahany, M. N.: Experimental and numerical simulation of dry pressure drop in high-capacity structured packings. *Chem. Eng. Technol.*, 39:1161–1170, 2016.
- [4] Khosravi-Nikou, M. R. Eshani, M. R.: Turbulence models application on CFD simulation of hydrodynamics heat and mass transfer in structured packing. *Int. Comm. Heat Mass Tr.*, 17:21, 2008.
- [5] Moukalled, F. Darwish, M. Mangani, L. The finite volume method in computational fluid dynamics: an advanced introduction with OpenFOAM and MATLAB. Springer-Verlag, Berlin, German, 1 edition, 2016. ISBN 978-3-319-16874-6.

Isoz, M., UCT Prague, IT CAS

Thank you for your attention

