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Abstract

In order to increase the size of the gas-liquid interface area and consequently the intensity
of the mass transfer, the separation columns are usually filled with a geometrically complex
packing. The packing highly increases intricacy of the flow in the column and also makes
almost all types of hydrodynamic measurements impossible. Hence a reliable model of the
flow in the complex geometry of the separation column packing is sought by the industry. We
provide a CFD model for the gas flow through two types of commercial structured packings,
Mellapak 250.X and Mellapak 250.Y. We validate the model on experimental data and use it
to study the gas mixing capabilities of the packings.
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1 Introduction

The U.S. Department of Energy estimates that the distillation columns are responsible for ap-
proximately 40% of the total energy consumption of the U.S.’s chemical industry [7]. Also, based
on a recent report on the energy consumption in the European Union[4], the chemical industry
participated on the total 2014 energy consumption of the European Union by 5%. As the struc-
ture of the chemical industry in the European Union and United States is, in overall, similar, it is
possible to estimate, that in 2014 the distillation columns caused approximately 2% of the total
energy consumption of the whole European Union. In absolute values, this roughly corresponds to
32 million tonnes of oil equivalent (or 372 · 106 MWh) per year[4].

Despite the energy-intensity of the distillation, the design of the separation columns is still
mostly empirical [19]. On the other hand, even a slight advancement in design or operation would
result in substantial cost savings. Hence, improvements in the distillation column design are
currently viewed as the biggest opportunity to increase the European chemical industry efficiency
and sustainability[21].

One of the reasons of the current state of the distillation column design is the shear complexity
of the involved technology. For example, due to the intricacies of the separations columns inter-
nals, it is almost impossible to directly measure the hydrodynamic properties of these devices.
Furthermore, the modeling of the foretold phenomenon has long been constrained by the lack of
both the necessary computing power and suitable models.

On the other hand, with the recent increase in available computational resources, the methods
of computational fluid dynamics (CFD) may be, in particular for the case of a single phase flow,
applied directly to resolve the flow in the whole column at once. This development inspired a
number of recent studies in this area. The overall review of the CFD methods available for the
design of packed absorption columns was recently given by Haroun and Raynal [9]. Besides,
Owens et al. [15] developed an approach to modeling the gas flow through widely used structured
packing, Mellapak 250.Y. They suggested the use of X-ray computed tomography (CT) for the
model geometry generation. Therefore, their model construction requires the availability of an
actual packing. However, the rest of the modeling proces is automatic and the results can be
obtained within hours. Aside from the above, Amini et al. [1] used a CFD model to complete
an experimental performance evaluation of a new type of structured packing and to speed up the
packing design process. Nevertheless, the CFD modeling is not limited only to the structured
packings and for example Parizi and Rahimi [16] used CFD to study the hydrodynamics of a sieve
tray distillation column. Interestingly, not many results are available for the random packings



and the few existing results are oriented towards packed bed reactors and either a spherical or
cylindrical packing (e.g. Baker [3], Bai et al. [2]).

Figure 1: Example of a separation column packing – Mellapak 250.Y. An overall view of the
packing is depicted on the left. On the right, there is shown a detail of one element of a dismantled
packing. Structured packing usually consists of corrugated, perforated and textured steel plates.
Standard mode of operation is counter-current: liquid phase flows down and gas phase up.

Furthermore, besides the studies performed on the whole separation column geometry, there
exists a notable amount of results calculated on so called representative elementary units (REUs).
Structured packings are highly regular structures (see Fig. 1). Raynal and Royon-Lebeaud [17]
leveraged the regularity of the structured packings and proposed an approach based on a segmen-
tation of the problems into three ranges of spatial scales: (i) the micro-scale REU which is to
be resolved directly via a full CFD model, (ii) the meso-scale corresponding to one element of the
packing material, and (iii) the macro-scale, which coincides with the full column. The idea behind
the approach of Raynal and Royon-Lebeaud is to solve exactly only a small portion of the complex
geometry involved, REU, and to use the obtained information to construct an approximate model
of the larger spatial scales. Such approach is computationally less demanding process than CFD
simulation of the whole macro-scale column. Hence, it enables detailed studies of a multiphase
flow [6, 10] coupled with heat and mass transfer [20].

In addition to the results on applications of the CFD models to the specific industrial problems
there exist several studies of effects of different approaches to the modeling itself. As an example,
we would like to mention the work by Khosravi-Nikou and Eshani [12], who evaluated effects of
the turbulence model selection on the simulation results.

In the present work, we provide a CFD model for the gas flow in two types of widely used
commercial packings, Mellapak 250.X and Mellapak 250.Y. First, we validate the proposed model
against experimental data via a comparison of measured and calculated packing dry pressure loss.
Then we use the validated model to inspect the Mellapak 250 gas mixing capabilities.

Our overall approach used for the simulation construction was similar to the work of Owens
et al. [15] with the turbulence modeling based on the results of Khosravi-Nikou and Eshani [12].
The simulations were carried out in the OpenFOAM software. The OpenFOAM is an open-source
finite volume method (FVM) based solver. It focuses primarily on issues of the computational
continuum mechanics. As a tool for the packing geometry creation, we applied the Blender, an
open-source 3D creation suite. Combining Blender and OpenFOAM, we were able to generate
the structured packing geometry and the corresponding mesh automatically. It makes the model
completely independent on the availability of the real packing and thus suitable for packing design.

2 Computational domain and meshing

The Mellapak 250 packing is a geometrically highly complex structure, as it may be seen in Fig. 1.
Thus, a robust tool has to be used for a suitable FVM mesh creation. As a suitable tool, we
selected snappyHexMesh utility available in the OpenFOAM core installation. SnappyHexMesh



requires a representation of the geometry, which we created within the Blender software suite. One
example of a whole geometry of one packing element with a diameter Dpk = 0.14 m and height
Hpk = 0.21 m is depicted on the left side of Fig. 2.

Figure 2: Geometry of one packing element of the Mellapak 250.X packing is depicted on the left
side. On the right side, a detail of one packing channel is shown.

The process of the geometry creation leverages the regularity of the Mellapak packing structure.
More specifically, the packing is formed by a series of channels with a triangular cross-section as it
is shown on the right side of Fig. 2. Thus the geometry of the Mellapak packing can be described
using only several different parameters, namely the dimensions of one channel, the channel side
length, ach, and the angle between the channel sides, θch, the number of channels appertaining
to one corrugated metal sheet, Nch, the channel inclination to the horizontal, αch, the number of
metal sheets to be created, Nsh and the overall size of the packing described by Dpk and Hpk.
Furthermore, it is possible to describe the packing perforation by the diameter of one hole, Dpr,
and the distance between the centers of two adjacent holes, apr. Finally, the whole packing bed
might be defined by the number of the packing elements, Npk, and the respective rotation of the
two adjacent packing elements, ϕpk. The last parameter required for the geometry creation is the
thickness of the used metal sheets. This parameter was fixed at wsh = 0.5 mm as finner sheets
caused instabilities during the meshing process.

The geometry creation is specified in Alg. 1. For the clarity of the notation, we use a com-
bination of a global Cartesian coordinate system (O, x, y, z) with a local coordinate systems
(Õi, x̃i, ỹi, z̃i). The center of the local coordinate system, Õi, is fixed at the centroid of the object
i and the local axis (x̃i, ỹi, z̃i) are parallel with the global ones, (x, y, z).

Using the Alg. 1, it is possible to create a usable geometry for the Mellapak type packing within
minutes. As also the rest of the modeling process can be fully automated, it is possible to study the
dependence of the flow behavior on the geometry parameters. Furthermore, additional features,
such as the collars (or wall wipers) visible on the left side of Fig. 1 can be easily added to the
geometry. Examples of geometry of the packed beds consisting of Mellapak 250 packing elements
are depicted in Fig. 3.

The outputs of the Alg. 1 were imported in the OpenFOAM meshing tool, the snappyHexMesh.
The snappyHexMesh utility generates three-dimensional meshes containing hexahedra (hex) and
split-hexahedra (split-hex) automatically from triangulated surface geometries . As a core part of
the OpenFOAM software, the snappyHexMesh is specialized on FVM calculations.

The mesh approximately conforms to the surface by iteratively refining starting mesh and
morphing the resulting split-hex mesh to the surface . The mesh quality is repetitively controlled
and adjusted during the meshing process, which enables the snappyHexMesh to provide high quality
meshes even for complex geometries such as the studied Mellapak type packing. Furthermore, the
utility is suitable for paralelization, scales well even on hundreds of cores and thus is applicable



Algorithm 1 Mellapak type geometry creation

Require: Packing geometry parameters: ach, θch, Nch, αch, Nsh, Dpk, Hpk, Dpr, apr, Npk, ϕpk, wsh

1: Create the first channel side, s1, of dimensions ach × 2Dpk/ sinαch × wsh

at position xs1 = ((ach − wsh) cos θch, 0, 0)T;
2: Rotate s1 by θch/2 along the ỹs1 axis;
3: for i = 2 to 2Nch do
4: Duplicate the previous channel side, si ← si−1;
5: Update the location of si, xsi = (i(ach − wsh) cos θch, 0, 0)T;
6: Rotate si by (i mod 2)θch along the ỹsi axis;
7: end for
8: Join all the channel sides to one corrugated sheet, S1 :=

⋃2Nch

i=1 si;

9: Update the position of the global coordinate system, (O, x, y, z) := (ÕS1
, x̃S1

, ỹS1
, z̃S1

);
10: Rotate S1 by −αch along the z̃S1 axis;
11: for i = 2 to Nsh do
12: Duplicate the previous sheet, Si ← Si−1;
13: Update the location of Si, xSi

= (0, 0, (i− floor (Nsh/2))ach sin θch)T;
14: Rotate Si by (−1)iαch along the z̃Si

axis;
15: end for
16: Join all the sheets to one packing element, P1 :=

⋃Nsh

i=1 Si;

17: Update the position of the global coordinate system, (O, x, y, z) := (ÕP1 , x̃P1 , ỹP1 , z̃P1);
18: Cut out the cylindrical shape of the packing,

P1 := {(x, y, z) ∈ P1 : y2 + z2 ≤ D2
pk/4 ∧ |x| ≤ Hpk/2}

19: Create the perforation, P1 := P1\{(x, y, z) ∈ P1 : (x− iapr)
2 + (y − japr)

2 ≤ D2
pr/4}i,j∈Z;

20: for i = 2 to Npk do
21: Duplicate the previous packing element, Pi ← Pi−1;
22: Update the location of Pi, xPi

= ((1/2 + i− 2)Hpk, 0, 0)T;
23: Rotate Pi by (i mod 2)ϕpk along the x̃Pi

axis;
24: end for
25: Join all the packing elements to a packed bed, B :=

⋃Npk

i=1 Pi;
26: Update the position of the global coordinate system, (O, x, y, z) := (ÕB , x̃B , ỹB , z̃B);
27: return Geometry representation of the packed bed suitable for the snappyHexMesh utility

Figure 3: Geometry of a packed bed consisting of two unperforated Mellapak 250.Y/X
(top/bottom) packing elements completed with four wall wipers.



even to industrial size problems.
Due to the need to adjust the mesh to the complex geometry, the resulting mesh is unstructured.

More specifically, if we denote the cells of the base mesh as the cells with the refinement level L0,
all the cells within 4 mm away from the geometry walls are refined to the level L1, where the
refinement by one level corresponds to a splitting of the original cell to 8 approximately equivalent
sub-cells. Moreover, all the cells within the distance 2 mm from the geometry walls are refined to
the level L2. For the studied case of the packing diameter Dpk = 0.14 m and one packing element
height Hpk = 0.2 m the resulting mesh size was of the order of millions cells per one packing
element.

Figure 4: Mesh created for the Mellapak 250.Y packing. The depicted mesh has approximately
5.3 · 106 cells per one packing element. The cells with non-empty intersection with at least one of
the planes x = 0, y = 0 and z = 0 are shown.

An example of the constructed mesh is depicted in Fig. 4. The mesh refinement in the vicinity
of the geometry walls is well visible. Furthermore, it is possible to evaluate the mesh compliance
with the packing geometry.

3 Model equations and simulation set-up

In all simulations, we considered a steady state in the case of a isothermal turbulent flow of an
incompressible Newtonian fluid. All properties of the fluid were considered constant accross the
whole computational domain. For the purposes of this investigation, we used the simpleFoam solver
from the OpenFOAM toolbox. The simpleFoam is a steady state solver that uses the SIMPLE
algorithm[8, 14] to compute the pressure-velocity coupling.

3.1 Governing equations

A stationary isothermic turbulent flow of an incompressible Newtonian fluid is described by the
set of Navier-Stokes equations in the form,

∇ · (U⊗U)−∇ · T = −∇p

∇ ·U = 0 ,
(1)

where U corresponds to the velocity field, p to the kinematic pressure and T to the viscous stress
tensor defined as T = ν∇U. The coefficient ν denotes the fluid kinematic viscosity. Please note,
that we neglect all the body forces exerted on the fluid.



In order to take into account the effects of turbulence without having to resolve a transient
problem with numerous length scales, we apply Reynolds averaging and rewrite the velocity and
pressure as,

p = p+ p′

U = U + U′ ,
(2)

where p and U denote the averaged variables and p′ and U′ are the instantaneous fluctuations.
The averaging itself may be done with respect to either time or space. Either way, the averaging
operator has the following properties, (

φ
)

= φ

φ′ = 0(
φψ
)

= φψ(
φψ′
)

= 0(
∂φ′

∂s

)
= 0 ,

(3)

where φ, ψ represent some flow functions. Furthermore, in the last relation of the equation (3), s
may stand either for time or space coordinate.

Substituting for U and p in (1) from (2), while using the relations (3), one obtains the system,

∇ ·
(
U⊗U

)
−∇ ·

(
T + T′

)
= −∇p

∇ ·U = 0 ,
(4)

where the new variable, T′, is the so called Reynolds stress tensor in the form T′ = U′ ⊗U′.
Because of the presence of the non-linear Reynolds stress term, ∇ · T′, the formulation (4)

requires additional modeling to be closed. In the present work, we select the Menter’s k− ω shear
stress transport (SST) model[13] in the formulation given by Hellsten[11] as the most suitable
approach for the closure of the problem (4).

In the k − ω SST model, the closure problem is approached within the framework of the
Boussinesq approximation[5, 22],

T′ = νt∇U− 2

3
Ik , (5)

where νt stands for the kinematic turbulent viscosity, I for the unit tensor and k for the kinetic
energy of the turbulence. If one defines a modified kinematic pressure,

p̃ = p+
2

3
k , (6)

it is possible to rewrite the equations (4) as

∇ ·
(
U⊗U

)
−∇ ·

(
νeff∇ ·U

)
= −∇p̃

∇ ·U = 0 ,
(7)

where νeff = ν + νt is the fluid effective kinematic viscosity. In the equations (7), there are two
new variables, the turbulence kinetic energy, k > 0, and the kinematic turbulent viscosity, νt > 0.

The k − ω SST model is a two-equation model; hence, two additional partial differential equa-
tions are solved together with the equations (7). The equations are added for the above introduced
turbulence kinetic energy, k, and for the specific dissipation rate, ω > 0, and read as follows,

U · ∇k = Pk +∇ ·
[(
ν +

νt
σk

)
∇k
]
− β∗kω

U · ∇ω = Pω +∇ ·
[(
ν +

νt
σω,2

)
∇ω
]
− F2βω

2 + 2 (1− F1)σω,2
1

ω
∇k · ∇ω

(8)



The model itself is a blend of the original k−ω model and of the k− ε model[22]. The blending
is done through the function F1(k, ω, y+, . . . ), which converges towards 1 (k − ω model) in the
near-wall region (the dimensionless distance to the nearest wall y+ is small) and towards 0 (k − ε
model) in the free stream. Detailed specification of the model may be found for example in the
work of Hellsten [11].

We will restrict the model description to the specification of the turbulent kinematic viscosity,
νt, which appears in the equations (7). The turbulent kinematic viscosity of an incompressible
fluid is in the k − ω SST model defined as,

νt =
a1k

max (a1ω; |Ωij |F3)
, (9)

where a1 is a model constant, F3 is a limiter function, which improves the physicality of the
solution[11] and |Ωij | =

√
2ΩijΩij is the scalar measure of the vorticity tensor defined by

Ω =
1

2

(
∇U−

(
∇U

)T)
. (10)

Finally, please note, that in the following we will omit the over-lines and tildes in the symbols
notation.

3.2 Boundary conditions and initial guess

The system (7) – (8) needs to be completed with the suitable boundary conditions. The compu-
tational domain is defined as in section 2 and for the future reference will be denoted as S. Also,
we denote the boundary of S as ∂S and divide it into three different subdomains,

∂S = ∂Sinlet ∪ ∂Soutlet ∪ ∂Swall . (11)

Because the complete specification of the boundary conditions is given in Tab. 1, only a few
explanatory notes will be given in the following text.

Boundary Condition

Sinlet = {(x, y, z) ∈ R3 : x = hcol, y
2 + z2 ≤ r2col}

U = (−ui, 0, 0)
T, Sf · ∇p = 0

k = k0, ω = ω0

Soutlet = {(x, y, z) ∈ R3 : x = −hcol, y
2 + z2 ≤ r2col}

Sf · ∇U = (0, 0, 0)T ifΦ > 0, U = (0, 0, 0)T else
p = 0

Sf · ∇k = 0 ifΦ > 0, k = k0 else
Sf · ∇ω = 0 ifΦ > 0, ω = ω0 else

Φ = Sf ·U

Swall = B ∪ {(x, y, z) ∈ R3 : x = 〈−hcol,−hcol〉, y2 + z2 = r2col}
U = (0, 0, 0)T, Sf · ∇p = 0
Sf · ∇k = 0, Sf · ∇ω = 0

Table 1: Applied boundary conditions. The column height and diameter are denoted as hcol and
rcol, respectively. Symbol Sf denotes the outer normal vector to the boundary.

At the inlet, we prescribed Dirichlet boundary conditions for the velocity, U, turbulent kine-
matic energy k, and the specific dissipation rate ω. Although it would be possible to prescribe
more complex and physical inlet boundary conditions, based on the work of Khosravi-Nikou and
Eshani [12] and our own tests, we concluded, that the error caused directly by the used boundary
conditions is negligible.

At the outlet, we specified an inlet-outlet boundary conditions for U, k and ω. The inlet-outlet
boundary condition prescribes a zero-gradient Neumann type boundary condition for the case of
the fluid outflow defined as Φ = Sf · U > 0, where Sf is the outer normal to the boundary.
Otherwise, a Dirichlet type boundary condition is prescribed. Furthermore, we fixed the pressure
at the outlet by a Dirichlet type boundary condition.

On the walls, which consist of the column hull and the packing itself, we prescribed a standard
no-slip boundary condition for the velocity and the zero-gradient boundary condition for the pres-
sure. Furthermore, the mesh was refined in the way, that the nearest cells to the wall boundaries



lie within the flow laminar sublayer. Hence, we did not need to apply any special wall functions
to the turbulence variables k and ω.

The problem specification was completed by the prescribed initial guess,

U(0) = (0, 0, 0)T, p(0) = 0, k(0) = k0, ω(0) = ω0, ∀x ∈ S , (12)

where the initial guesses for k and ω were estimated via the following relations,

k0 =
3

2
(ufI0)

2
, I0 = 0.0853Re−0.0727 ,

Re =
ufdh
ν

, uf =
ui

εpk sinαch
,

ω0 =
ε0
k0
, ε0 =

0.1643k
3/2
0

0.07dh
.

(13)

In the above equations, uf denotes an estimate of the mean free stream velocity in a packing channel
calculated from the gas inlet velocity, ui, the structured packing porosity, εpk, and the channel
inclination angle, αch. The symbol I0 stands for the turbulence intensity and it is approximated
using the formula of Russo and Basse [18] for the flow in a smooth pipe, which is based on the
flow Reynolds number, Re. The used Reynolds number is evaluated from the estimate for the free
stream velocity in the channels, uf , the channels hydraulic diameter, hd, and the fluid kinematic
viscosity, ν.

4 Results and Discussion

In this section, we first present results of the mesh independence study performed to determine
how fine a grid is required to capture the important flow physics. Then, we will proceed to the
model validation, which is done through a comparison of measured and calculated dry pressure
losses. The dry pressure loss is a difference between the pressures above and bellow the packed
bed relative to the height of the packed bed,

∆ph :=
pabove − pbellow

NpkHpk
. (14)

After the model validation, we present results on the flow behavior in the Mellapak type pack-
ings, including the packing gas mixing capabilities.
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Figure 5: Mesh size independence study. The tests were performed for the N2 gas, ui = 3.05 m s−1,
and one element of the Mellapak 250.Y packing.



4.1 Mesh size independence

The calculated dry pressure loss for the selected mesh sizes as well as the simulations runtimes
on 4 cores of the Altix UV2000 commercial cluster are depicted in the top part of Fig. 5. At the
beginning, the calculated pressure loss increased with the mesh refinement. However, with the
number of cells in the mesh around 4 · 106, the dry pressure loss stabilized. More specifically, the
difference between the ∆ph calculated on the mesh with approximately 5.3·106 cells per one packing
element and the ∆ph calculated on the mesh with approximately 6.4 ·106 cells per packing element
was less then 0.5%. Hence, for the calculations, we used the meshes with the size corresponding
to 5.3 · 106 cells per one packing element.

4.2 Model validation

The model validation was done on experimental data measured in a semi-industrial absorption
column with the diameter Dcol = 0.15 m. The packed bed consisted of 6 packing elements of either
Mellapak 250.X or Mellapak 250.Y and had the total height of Hpk = 1.26 m. The used packing
had the diameter Dpk = 0.14 m. The experiments were performed for three different gases, He, N2

and SF6, which differ mostly by their density and consequently also by their kinematic viscosity.
The properties of the used gases are summarized in Tab. 2

Gas µ, 10−5 [Pa s] ρ, [kg m−3] ν, 10−5 [m2s−1] ui range, [m s−1] Packing type

N2 1.75 1.149 1.52 〈0.46, 4.34〉 X,Y
He2 2.00 0.190 10.5 〈1.05, 6.81〉 X,Y
SF6 1.55 5.648 0.274 〈0.28, 1.94〉 Y

Table 2: Properties of the gases used for the model validation.

The gas inlet velocities ranged from approximately 0.4 m s−1 to approximately 6.8 m s−1. The
lower bound of the gas velocity was determined by the sensitivity of the used barometer, the upper
bound was due to the used fan power.

The model geometry was designed to match the experimental set up as much as possible. The
only difference was the lack the lack of wall wipers in the model geometry. Furthermore, also the
fluid properties were fixed as close as possible to the real gases. In Fig. 6, we compare the measured
and calculated ∆ph for all the available data.

For the Mellapak 250.Y cases, the relative difference between the measured and estimated
values,

ER :=

∣∣∣∆pExp.
h −∆pCFD

h

∣∣∣
∆pExp.

h

· 100% , (15)

was usually bellow 10%. The only exceptions were the measurements with extremely low gas flow
rates, where the ER might go up to 30%. On the other hand, as the ∆pExp.

h was close to the lowest
measurable value, the experimental data in these cases could be burdened with some error.

For the Mellapak 250.X cases, the model tends to underestimate ∆ph, in the worst scenario
encountered for the N2 gas by approximately 30%. We assumed, that such a behavior might have
two main causes.

As a first cause, we identified the lack of wall wipers in the model geometry. In reality, the
Mellapak packing wall wipers are made out of a dense steel net. Hence, the permeability of the
wall wipers material for the gas flow depends on the angle of attack. For the case of the angle of
attack close to π/2, the material is well permeable. On the other hand, for the angle of attack
approaching either 0 or π, the material is almost completely impermeable. As a consequence, the
effects of wall wipers on ∆ph is stronger for Mellapak 250.X packing, in which the angle of attack
on the wall wiper is close to π/6, compared to Mellapak 250.Y packing, with the angle of attack
approximately π/4.

We thought that the second reason was the number of the used packing elements. For the
data depicted in Fig. 6, we simulated only one packing element. For the combination of the used
overall packing dimensions (Hpk = 0.21 m, Dpk = 0.14 m, Dcol = 0.15 m), this means, that there
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Figure 6: Results of the model validation obtained on one packing element. In the left part of the
figure, there are directly compared measured and calculated dry pressure losses. In the top right
subplot, we depict the absolute differences between the experiment and CFD. In the bottom right
subplot, the corresponding relative differences are shown.

exists a few channels that go through the whole geometry without encountering any of the column
outer hull. Thus, the gas flowing through these channels is not forced to change the flow direction
within the simulated domain. As the forced changes in the gas flow direction are, together with the
friction on the walls, the main cause for the flow energy dissipation, the presence of such channels
was assumed to cause the underestimation of the packing dry pressure loss.

Nevertheless, the comparison of the dry pressure loss calculated on one and two packing ele-
ments, shown in Fig. 7, disproved our hypothesis. In most cases, the relative difference between
the calculated pressure losses is around or less than 1%. Thus, it cannot explain the difference
between the measured and estimated ∆ph for the N2 gas flow through the Mellapak 250.X, which
is around 30%. On the other hand, we confirmed that for the ∆ph estimation, it is sufficient to
simulate a single packing element.
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Figure 7: Comparison of the relative difference between the calculated ∆ph for one and two packing
elements.



4.3 Gas mixing properties of studied packings

Figure 8: Pressure and velocity field in the Mellapak 250.Y packing. The depicted results were
calculated on two packing elements for He, ui = 2.30 m s−1, Re = 280.

Via the validated model, we studied the flow characteristics of the gas in Mellapak 250.X and
Mellapak 250.Y packings. An example of the obtained qualitative results is depicted in Fig. 8.
The clip in the back of Fig. 8 shows an example of the kinematic pressure distribution in the
computational domain. Here, we would like to emphasize the visibly higher pressure at the entrance
to the channels, as well as a relatively low pressure drop caused directly by the transfer from
one packing element to another. The latter result corresponds well with the above noted good
agreement between the pressure losses calculated on one and two packing elements.

The slices through the geometry made at x = {−0.13, 0.00, 0.13}m show the main flow patterns
inside the structured packing. One may notice a rotation of the principal plane of the flow between
the first slice at x = +0.13 m and the last one at x = −0.13 m by 90◦, which corresponds to the
angle between the two packing elements, ϕpk. The middle slice is placed directly at the contact of
the two elements and shows the transition region between the two regular flows.

Within the limitations of the performed Reynolds averaging, it is possible to conclude, that the
flow in the studied structured packing is mostly irrotational (with the exceptions of the transition
between the packing elements and the region close to the column outer hull) and highly regular.
Interestingly, the gas remains in the original channel even during the contacts with the channels
with different orientation (the channels appertaining to the neighbor packing sheet). In other
words, there is no gas mixing at the channel-channel contact planes. More specifically, the contact
plane between two channels with the opposite orientation, although it is in fact just a hypothetical
boundary, it behaves as a wall moving parallel to the axis x.

Another possibility to evaluate the flow properties inside the structured packing is via the
velocity streamlines. Without the loss of generality we define a streamline passing through the
point x0 as

γx0
=

{
x ∈ S :

dx

d t
×U = 0,x(t = 0) = x0

}
(16)

and the set of all the streamlines passing through a seed domain, σ, as

Γσ = {γx ∈ S : x ∈ σ} . (17)

In Fig. 9, we compare the streamlines obtained in the Mellapak 250.Y geometry for two different



Figure 9: Mixing of the gas in the Mellapak 250.Y packing. The depicted results were calculated
on two packing elements for He, ui = 2.30 m s−1, Re = 280.

seed domains,

σ1 = {(x, y, z) ∈ S : x = −0.22 m, y2 + z2 ≤ 0.0252 m}

σ2 = {(x, y, z) ∈ S : x = −0.22 m, 0.072m ≤ y2 + z2 ≤ 0.0752 m} .
(18)

The first seed domain, σ1, represents a circle with the diameter Dσ1
= 0.05 m placed one centimeter

bellow the packed bed. The seed domain σ2 corresponds to an annulus placed one centimeter bellow
the packed bed. The dimensions of the annulus were chosen in the way, that it fits into the gap
between the packing and the column outer hull. Because of the seeds selection, it is possible to
qualitatively study the mixing properties of the Mellapak 250.Y packing.

To study the mixing properties of the structured packing, we propose to introduce a notion of
the distribution of the streamlines passing through a seed source σ in a control volume, ω ∈ S.
Let us denote the discrete representation of the computational domain S as Sh. The discrete
computational domain (i.e. the mesh) consists of M non-overlapping cells, xhi , of volumes V(xhi ).
Hence, in the discrete setting it is possible to introduce a volume of the discrete representation of
the trajectory γx as follows,

V(γhx) =
∑

xh
i ∈γh

x

V(xhi ), (19)

where γhx is the above mentioned discrete representation of the trajectory γx. Furthermore, the
volume of the discrete domain ωh is

V(ωh) =
∑

xh
i ∈ωh

V(xhi ) . (20)

Finally, it is possible to calculate the fraction of V(ωh) occupied by the trajectories Γhσ,

%ωσ =
V(Γhσ ∩ ωh)

V(ωh)
. (21)

Definition 1 We say, that the trajectories are uniformly distributed in some domain Sh,
if %ωσ = %Sσ ∀ωh ⊆ Sh.



Remark 1 Please note, that the above definition is relevant strictly to the discrete setting and
does not hold asymptotically. For example, the selection of ωh is not completely unconstrained, as
it is limited by the size of the discretization cells.

After passing through two packing elements, the streamlines are rather uniformly distributed
for both the selected seeds, as it might be seen in Fig. 9. However, the uniform streamlines
distribution seems to be obtained more quickly for the gas entering to the column near the outer
hull.

For the case of σ1, depicted in the left side of Fig. 9, the gas enters directly only a few channels
in the center of the packed bed. However, at the exit from these channels, the gas does not re-enter
only the channels directly above, but rather a several channels close to the original channels exit.
As a result, the ratio of the number of the exited channels to the number of the newly entered
channels is lower than one. The fact that at each encounter with the column outer hull the gas
enters more channels, than it exits causes, that at the outlet from the first packing element the
streamlines are uniformly distributed along the y axis. However, as the channels in the first packing
element are oriented parallel to the z = 0 plane, the gas is not transported along the z axis. On
the other hand, at the entrance to the second packing element, the gas, already evenly distributed
along the y axis, enters all the available channels that are oriented parallel to the y = 0 plane. As a
result, the streamlines distribution at the outlet from the second packing element is approximately
uniform.

Regarding the case of σ2, the gas starts by sliding along the column outer hull and enters
the first packing element not directly from the bottom, but rather from sides. Consequently, the
equalization of the streamlines distribution along the y axis is quicker. Furthermore, the gas enters
the channels of the first packing element all across the z axis. Hence, the trajectories are more or
less uniformly distributed already at the outlet from the first packing element.

5 Conclusions

Even nowadays, the distillation remains the most energy-intensive technology of the chemical
industry. Nevertheless, the design of the distillation columns remains mostly empirical. In an
attempt to shed some light on the intricacies of the gas flow in the widely used commercial pack-
ings, Mellapak 250.X and Mellapak 250.Y, we provided a relatively quick and accurate method
to generate a geometric representation of these packings. Furthermore, we constructed a CFD
model for the gas flow through the structured packing. We validated the model on the available
experimental data and used it to study the flow characteristics in the Mellapak type structured
packings. In the future research, we would like to concentrate on the modeling of the multiphase
flow in the Mellapak type packings as well as on the development of the models for the flow in
random packings.
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