
MODEL ORDER REDUCTION TECHNIQUE FOR LARGE SCALE FLOW

COMPUTATIONS

M. Isoz

Institute of Thermomechanics of the Czech Academy of Sciences, Dolejskova 5, 182 00 Prague,
Czech Republic

Abstract

Current progress in numerical methods and available computational power combined with
industrial needs promote the development of more and more complex models. However, such
models are, due to their complexity, expensive from the point of view of the data storage and
the time necessary for their evaluation. The model order reduction (MOR) seeks to reduce
the computational complexity of large scale models. We present an application of MOR to the
problems originating in the finite volume (FV) discretization of incompressible Navier-Stokes
equations. Our approach to MOR is based on the proper orthogonal decomposition (POD)
with Galerkin projection. Moreover, the problems arising from the nonlinearities present in
the original model are adressed within the framework of the discrete empirical interpolation
method (DEIM). We provide a link between the POD-DEIM based MOR and OpenFOAM,
which is an open-source CFD toolbox capable of solving even industrial scale problems. The
availability of a link between OpenFOAM and POD-DEIM based MOR enables a direct order
reduction for large scale systems originating in the industrial practice.

Keywords: Proper orthogonal decomposition, Discrete empirical interpolation method, Compu-
tational fluid dynamics, OpenFOAM.

1 Introduction

The modern mathematical models appearing in engineering can impose difficulties when it comes
to their numerical solution and day-to-day usability. Because of the advances in numerical math-
ematics and available computing power, these models tend to be more and more complex. As a
result, evaluation of the modern numerical models often requires powerful computers. Further-
more, the calculations are usually expensive from the point of view of the computational time.
Nevertheless, industrial practice often calls for parametric studies and optimizations performed
using these models.

The model order reduction (MOR) is a useful tool for accelerating calculations connected to
parametric studies or optimizations of complex systems. In this paper, we consider MOR based
on the proper orthogonal decomposition (POD) with Galerkin projection, which is well described
for example by Pinnau [1] or Volkwein [2]. The problems arising from the nonlinearities present
in the original model are addressed within the framework of the discrete empirical interpolation
method (DEIM) of Chaturantabut and Sorensen [3].

Because of its applicability to a wide range of engineering problems, the POD-DEIM based
model order reduction is a quickly developing branch of applied mathematics. As examples of
recent developments and applications, we would like to mention the work of Drmac and Gugercin
[4] on a priori error bounds for discrete empirical interpolation and the article of Lozovskiy et al.
[5] on application of POD based ROM for shallow water flows.

The presented reduced order model (ROM) creation technique represents an a posteriori ap-
proach to MOR [6]. Hence, the solution of the full order model (FOM) has to be available for the
ROM creation. Moreover, not only the solution of the system is necessary for the POD-DEIM based
model order reduction, the method also needs an access to several other data structures, which are
internal to the CFD solver and which are usually not readily available. This need to easily access
the internal CFD solver variables often results in the use of in-house CFD solvers to calculate
the FOM results. However, in order to enable a direct order reduction for large scale systems
originating in the industrial practice a link between POD-DEIM based MOR and a robust enough
CFD solver is needed. In this paper, we provide and validate a link between POD-DEIM based
MOR and OpenFOAM [7]. Special emphasis is made on MOR for pressure-linked Navier-Stokes
equations.



2 Fundamentals of model order reduction

The proper orthogonal decomposition is a projection method for reducing the dimensions of general
large-scale ODE systems regardless of their origin [1]. However, within our work we will restrict
our interest to the systems obtained from the semi-discretization of time dependent or parameter
dependent partial differential equations (PDEs). Furthermore, given our interest in OpenFOAM,
which is a finite volume method (FVM) based solver for the problems of the computational fluid
dynamics (CFD), we will take a special interest in ROM of the large-scales ODE systems generated
by the FV discretization of the Navier-Stokes equations.

A scalar nonlinear PDE for an unknown function y : R× R3 → R may be rewritten as

ẏ + L(t, y) = 0 , (1)

where the operator L represents all the terms of the original PDE apart from the temporal deriva-
tive. After the FV semi-discretization of the equation (1) one obtains the system

∆Ωhẏh + Lh(t, yh) = 0, yh : R→ Rm , (2)

where Lh(t, yh) is the FV spatial discretization operator corresponding to the operator L and
∆Ωh := diag(δΩhi ) ∈ Rm×m is a diagonal matrix in which the symbol δΩhi represents a volume of
one element of the computational domain discretization. Note that from now on, we work solely
with yh, the spatially discretized approximation of y. The superscript h will be omitted in the
following.

In the OpenFOAM software, the operator Lh(t, y) has the structure Lh(t, y) = −Ã(t)y− b̃(t, y),
where the linear, implicitly discretized, members are lumped in the term Ã(t)y and the explicitly
discretized nonlinearities are used for the construction of the vector b̃(t, y). The size of the matrix
Ã and of the vector b̃ is determined by the number of the cells in the FV discretization mesh, m.
Because the matrix ∆Ωh is diagonal, its inversion is cheap and equation (2) can be recast as a
(large) system of ODEs,

ẏ = A(t)y + b(t, y), y(0) = y0, A(t) = (∆Ωh)−1Ã(t), b(t, y) = (∆Ωh)−1b̃(t, y) . (3)

POD is a projection method, its main objective is to find a subspace approximating a given set of
data in an optimal least-square sense. In our case, the data is generated by sampling the solution
of the full order model (3) at given times, {yj := y(tj)}nj=1 , tj ∈ (0, T ]. These samples are called

snapshots. The details on the theory of POD may be found for example in [1]. We will restrict
our description to a sketch of the process of the reduced order model construction.

Let us denote the space containing the solution of the system (3) and its orthogonal basis as
V = span{ψj}dj=1. Then it is possible to rewrite the solution of (3) as

y(t) =

d∑
j=1

ηj ψj , ∀t ∈ [0, T ], ηj(t) := 〈y(t), ψj〉, d = dim(V ) , (4)

where by 〈·, ·〉 we denote an inner product in the L2 space. The Fourier coefficients ηj , j = 1, . . . , d,
are functions that map [0, T ] into R.

We arrange the members of the sum in (4) in descending order by the amount of information
on the original system they carry, take the first l ≤ d members of and introduce the ansatz

y`(t) =
∑̀
j=1

η`j ψj , ∀t ∈ [0, T ], η`j(t) := 〈y`(t), ψj〉, l ≤ d , (5)

which is an approximation of y(t) provided ` < d. Inserting (5) into (3) and assuming that the
equality holds after projection of V on the `-dimensional subspace V ` = span{ψj}`j=1 we obtain
the system

η̇` = A`η` + f `(t, η`), ∀ t ∈ (0, T ], η`(0) = η`0 , (6)

where we defined the reduced system matrix

A` := (a`ij) ∈ Rl×l, a`ij = 〈Aψj , ψi〉 , (7)



the ROM nonlinearities f ` = (f `i )T : [0, T ]→ R`, f `i (t, η) =
〈
f
(
t,
∑`
j=1 ηjψj

)
, ψi

〉
, and the initial

condition η`(0) = η`0 = (〈y0, ψ1〉, . . . , 〈y0, ψl〉)T. The dimension of the newly defined system (6) is
` ≤ d ≤ m.

The quality of the approximation is largely dependent on the choice of basis functions {ψj}`j=1.
For the sake of brevity, let us only state (the proof may be found in [2]) that the columns of
the matrix Ψ = [ψ1, . . . , ψ`] ∈ Rm×` calculated via the POD method are a suitable basis for the
discrete representation of the space V `. For a detailed description of POD algorithm, see e.g. [1, 2].

Furthermore, to make ROM completely independent of the full system dimension, it is necessary
to address two issues. The first issue is the time dependence of the matrix A, which would cause
the need to recalculate the matrix A` for each ROM evaluation.

A way to resolve the time dependence of the matrix A is to sample the system matrices the
same way as the full system solution and to interpolate between the full system matrix snapshots.
If one uses the linear interpolation, it is possible to write the approximate system matrix as

Â(t) := $(t)Ai−1 + (1−$(t))Ai, $(t) =
t− ti−1
ti − ti−1

, i = 1, . . . , n . (8)

Substituting the approximation (8) of the matrix A into A` matrix definition (7), we define an
approximate time dependent matrix of the reduced system as

Â`(t) := ΨTÂ(t)Ψ = $(t)ΨTAi−1Ψ + (1−$(t))ΨTAiΨ = $(t)A`i−1 + (1−$(t))A`i (9)

and the reduced order model, once it is created, stays fully independent on the full system dimen-
sion.

The second problem arises when you look closely at the nonlinearities in (6). One may notice
that to evaluate the non-linearity in the reduced order model f `(t, η`), it is necessary to evaluate

the function f at (t, y`) and y`(t) =
∑`
j=1 η

`
j(t)ψj ∈ Rm. This significantly increases the cost of the

evaluation of ROM. In this work, we address this problem via the discrete empirical interpolation
method of Chaturantabut and Sorensen [3].

DEIM is a combination of the greedy algorithm and POD. The reduction of the computational
cost of the system nonlinearity evaluation is achieved by reducing the size of the argument of the
function f (assuming it is point-wise evaluable). The details of the procedure may be found for
example in the aforementioned article by Chaturantabut and Sorensen. The outputs of DEIM may
be used to approximate the nonlinearity in ROM by

f `(t, η`) ≈ f̃(t, η`) := ΨTΦ(PTΦ)−1f(t, PTΨη`) , (10)

where the nonlinearity argument PTΨη` is in Rp, p ≤ m. We would like also to emphasize that
to use DEIM, the nonlinearity samples {fj := f(tj , yj)}nj=1 need to be included in the solution
snapshots.

3 Reduced order model construction for pressure-linked
Navier-Stokes equations

The application of the POD-DEIM based model order reduction to the systems originating in the
FV discretization of the incompressible Navier-Stokes equations is not completely straightforward.
In the incompressible Navier-Stokes equations,

u̇+∇ · (u⊗ u)−∇ · (ν∇u) +∇p = f ,
∇ · u = 0 ,

(11)

the continuity equation ∇ · u = 0 is pressure free. Thus, their discretization ultimately leads to a
system of linear algebraic equations of the form,(

M NT

N 0

)(
uh

ph

)
=

(
fh

0

)
, (12)



where we denoted the discrete representations of the considered functions by the superscript h. The
matrix N coincides with a discrete representation of the ∇ operator. The matrix M is slightly more
difficult. The Navier-Stokes equations for an incompressible isothermal flow (11) are nonlinear.
Hence, the nonlinear convective term ∇ · u ⊗ u, needs to be linearized during the construction of
the matrix M . If we apply the Newton linearization to the nonlinear convective term,

∇ · uj ⊗ uj ≈ uj−1∇uj + uj∇uj−1, j . . . current time step/iteration , (13)

we can define a linear operator

M(uj−1, uj) := u̇j +∇ · (ν∇uj) + P(uj−1, uj) , (14)

where P represents the Newton linearization operator. Then, the matrix M is a discrete represen-
tation of the operator M.

The matrices M and N are, as results of the FV discretization, large and sparse. The sys-
tem (12) is a so called saddle point problem and as such, it cannot be directly solved by the
available methods of numerical linear algebra.

However, if one assumes the matrix M to be regular, it is possible to explicitly express the
velocity from the first row of the system (12) and to substitute for it in the second row. Doing so,
the following system for one unknown ph ∈ Rm is obtained

NM−1NTph = NM−1f, uh = M−1
(
f −NTph

)
. (15)

Nevertheless, as M is a large sparse matrix, its inverse is usually not obtainable and the system (15)
needs to be solved iteratively by alternatively updating the values of ph and uh (see e.g. [8] or any
description of SIMPLE or PISO algorithms).

The resulting iteration scheme for solution of pressure-linked Navier-Stokes equations usually
has the following structure,

ND−1NTph,n = ND−1(f − (U + L)uh,o),

uh,n = D−1
(
f − (U + L)uh,o −NTph,n

) (16)

where we denoted the current iteration by the superscript o and the following iteration by n. For
the purposes of the iterations (16), the matrix M was split as M = D + L + U , where D, L and
U are diagonal, lower triangular and upper triangular matrices, respectively.

The reduced order model generated from the solution to (11) computed by any solver based
on a SIMPLE-like pressure-velocity coupling (16) needs to take into account the above outlined
solution procedure. The natural variable for the solution techniques for the incompressible Navier-
Stokes equations based on the solution of the system (15) is the pressure. Thus, it would seem
reasonable to base the reduced order model directly on relations (16).

To define the base system for the construction of ROM for the pressure we propose to split the
operator M introduced in (14) as

M =Mt +Mx, Mt(u
j) := u̇j , Mx(uj−1, uj) = ∇ · (ν∇uj) + P(uj−1, uj) . (17)

Furthermore, we split also the matrix M obtained by the FV discretization of M,

M = Mt +Mx = Mt +Dx + Lx + Ux . (18)

We propose to define the system in the form (3) as

ṗ ≈ A(t)p+ b(t, p), A(µ) := ND−1x NT, b(t, p) := ND−1x (f − (Ux + Lx)uh) , (19)

where uh is the solution for the velocity obtained from the SIMPLE iterations. Please note, that
the pressure derivative is defined only approximately because at the moment we do not have the
proof of equivalence. Also let us emphasize that due to the linearization (13), the coefficients of
the matrix Mx are dependent on the current velocity field. Consequently, the matrix A is time
dependent.



4 Validation of the proposed approach

In order to validate the proposed method, we performed a series of numerical tests. We started
with a test of the link between POD-DEIM based MOR and OpenFOAM solver on a system which
can be readily expressed in the form (1). Then, we proceeded to the validation of the presented
approach to the ROM construction for the incompressible Navier-Stokes equations.

As a problem that can be expressed directly in the form (1) , we selected the advection of
passive scalar α that comes from the Volume-of-fluid (VOF) simulations of multiphase flows [9].
The principle of the VOF method is to solve the Navier-Stokes equations for a single hypothetical
fluid with properties changing in the computation domain. The fluid properties are calculated as
a weighted average of the properties of the constitutive phases marked by A and B, respectively.
The weight function corresponds to the volume fraction of the tracked phase, i.e. A, at a given
point in space-time continuum.

More specifically, the used advection equation for the passive scalar α is

∂tα+∇ · (uα) +∇ · (urα(1− α)) = 0 , (20)

where ur is the interface compression velocity defined by

ur = uA − uB . (21)

After the spatial discretization of (20), one obtains the system in the form (2),

ẏα = −
(
∆Ωh

)−1 Lhα = Aα(t)yα + bα(t, yα), ẏα = ∂tα, yα := α , (22)

for which it is possible to construct the reduced order model directly by the methods presented
in section 2. Please note that we use a shortened notation. For example the matrix Aα does not
explicitly depend on time, but it is a function of the time-dependent velocity field. However, the
velocity is not considered a system unknown because we are interested only in the advection of the
variable α.

Figure 1: Qualitative comparison of the results of the CFD simulation and ROM results for the
case of a multiphase flow down an inclined plate. The results of the ROM are shown in the middle
of the figure. The only variable of interest is the tracked phase volume fraction, α. Depicted is the
gas-liquid interface, which is an isosurface with α = 0.5. On the right side of the figure, we give
a quantitative comparison of CFD and ROM results. The areas of the computational domain in
which the difference between the two results was higher than 10% of max (α) = 1.0 are displayed.
The CFD gas-liquid interface is shown for easier orientation in the figure.

In Fig. 1, we show a qualitative comparison between the results of an OpenFOAM CFD simu-
lation and the ROM for the case of a gravity-driven multiphase flow down a plate inclined by an
angle ϕ = 60◦ to the horizontal. The dimensions of the computational domain are 6× 5× 0.7 cm.

The CFD simulation was performed on approximately 1 million cells. The reduced order model
consisted of 46 ordinary differential equations. On an examination of Fig. 1, it can be seen that the



ROM describes well the general features of the flow. However, it tends to smoothen the gas-liquid
interface. Nonetheless, there is a rather good qualitative agreement between the ROM and CFD
simulation.

To further evaluate on the agreement between the CFD simulation and ROM, we calculated
an absolute difference of the fields αCFD and αROM . Because the tracked phase volume fractions
are from [0, 1], the calculated absolute difference coincides with the relative difference,∣∣αCFD − αROM ∣∣ = εRα :=

∣∣αCFD − αROM ∣∣
maxα−minα

as α ∈ [0, 1] . (23)

In the right side of Fig. 1 we depict only the parts of the computational domain in which
εRα ≥ 0.1 as for the most of the domain the difference is substantially lower. It is visible, that the
biggest differences between the fields were encountered at the parts of the computational domain
with complex gas-liquid interface evolution. Or, in other words, with large gradient of α function.

To get a notion of the difference of the solutions in the whole computational domain, let us
define the spatial average of εRα as,

εRα =

∑m
i=1 ε

R
α,i

m
, (24)

where m is the number of cells in the computational mesh. The value εRα for the case depicted in
Figures 1 is εRα = 0.0088.
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Figure 2: Evolution of the mesh mean value of difference between the CFD and ROM, denoted as
εRα , in time. Please note, that we selected only 25 representative values out of 200 taken snapshots.

In Fig. 2 we show the evolution of εRα with simulation time for the studied case. The applied
initial condition corresponds to a dry plate. Hence, at the beginning, the simulation is highly
dynamic and we would need to use a large number of snapshots to account for this effect. However,
at t ≈ 0.3 s the flow becomes quasi-periodic and the agreement between the CFD and ROM is
significantly improved. Furthermore, comparing Figures 1 and 2, it is possible to conclude that
although the local difference between CFD and ROM might go up to 30%, the difference between
the α fields on the whole mesh lies well bellow 5%. Hence, we conclude that the implementation
of the link between POD-DEIM based MOR and OpenFOAM was succesfull and the approach is
usable for creation of ROMs based on equations expressible in the form (1).

After the validation of the link between the MOR and OpenFOAM, we tested the proposed
approach to the ROM creation for pressure-linked incompressible Navier-Stokes equations. As a
test case, we selected a creation of the reduced order model for a transient laminar flow in the
vicinity of a cylindrical obstacle. Such a flow develops an instability that leads to the formation
of the famous von Karman vortex street [10]. A qualitative comparison of the results of the full
model (FVM simulation of the full Navier-Stokes equations on approximately 18000 cells) and the
created ROM (system of 7 ODEs) is depicted in Fig. 3 on the next page.

In agreement with the definition (23), we define a mesh averaged relative difference of the fields
yCFD and yROM as,

εRy =

∑m
i=1 ε

R
y,i

m
, εy,i =

∥∥yCFD − yROM∥∥
max∀(i,j) y −min∀(i,j) y

, i = 1, 2, . . . ,m, j = 1, 2, . . . , n , (25)



where n is the number of available snapshots of the full solution, m is the original model dimension
and by max∀(i,j) y and min∀(i,j) y we denote the maximum and minimum value of the corresponding

matrix of snapshots, Y =
[
yCFD1 , . . . , yCFDn

]
.

Figure 3: Qualitative comparison of the results of the CFD simulation and ROM results for the
case of the flow around a cylindrical obstacle (von Karman vortex street). Results of the ROM are
depicted in the top part of the figure, results of the full model are depicted in the bottom. The left
part of the image is colored according to the pressure field, the right part according to the velocity
magnitude.
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Figure 4: Evolution of the mesh mean value of difference between the CFD and ROM, denoted
as εR, in time. Please note, that only every third measured point is marked by a corresponding
symbol.

In Fig. 4 we depict the time dependence of εRp and εR‖u‖. It can be seen, that the difference
between the full order model and reduced order model for pressure, which is our primary variable,
oscillates around 0.2% for the whole simulation. The magnitude of the difference between the
velocities is slightly larger, around 0.6%. However, this is to be expected because the velocity
field uROM is obtained from pROM via an approximate form of the relation (15). The necessity
of approximating the relation (15) and its final form is imposed by the applied method for the
finite volume solution of the incompressible Navier-Stokes equations and will not be discussed
here. Instead, the interested reader is pointed towards the relevant literature on the topic, e.g.
[8, 11].



5 Conclusions

We proposed and validated an approach to use the proper orthogonal decomposition and the
discrete empirical interpolation method for the model order reduction of systems arising from the
finite volume spatial discretization of the incompressible Navier-Stokes equations. The presented
approach is specifically designed for the pressure-based Navier-Stokes equations solution methods
(e.g. SIMPLE, SIMPLEC or PISO algorithms). We were able to successfully link the proposed
method with the OpenFOAM software. In the future, we plan to improve the mathematical
background of the proposed approach to the model order reduction of the Navier-Stokes equations.
Also, we would like to concentrate on the model order reduction for parametric studies of systems in
a steady state. Finally, let us emphasize that all the computations connected to the ROM creation
and evaluation are performed independently of the FOM solution. Therefore, all the capabilities
of the OpenFOAM library, e.g. parallelization, are available for the FOM evaluation.
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