# Numerical Simulation of Flow in SuperPak Family Packings <br> Jakub Smutek ${ }^{1}$, Martin Isoz $^{1,2}$ 

${ }^{1}$ Department of Mathematics, Faculty of Chemical Engineering, University of Chemistry and Technology, Studentska 5, 166 28 Prague, Czech Republic
${ }_{2 l}$ Institute of Thermomechanics of the Czech Academy of Sciences, Dolejskova 5, 18200 Pregue, Czech Republic

## Introduction

The distillation unit operation is the most energy-consuming process in chemical industry. It is responsible for approximately $50 \%$ of the total energy consumption of industrial separation processes in the US [1]. Commonly, the distillation is performed in the columns filled with a structured packing. The packing highly increases intricacy of the flow in the column. Consequently, it is nearly impossible to predict hydrodynamic properties of newly designed packings and all new packing designs have to be verified experimentally.
The present work is a part of a larger project $[2,3]$. The aim of the project is to establish a CFD methodology, usable for evaluation of structured packing performance, to optimize existing packings, and to develop new packing designs. In the present work, we concentrate on modeling the gas flow in a SuperPak family of structured packings. Our approach to model the gas flow in these packings is based on creating a geometry representation that resembles the real packing as much as possible, see Fig. 1.


Figure 1 : Comparison of laboratory scale SuperPak 250.Y packing and our representation of the packing

SuperPak type packing geometry generation algorithm
Require: Packing geometry parameters: $N_{a r c}^{x}, N_{\text {arc }}^{y}, w_{a r c}, l_{\text {arc }}, h_{\text {arc }}, m_{a r c}, \theta_{c h}, N_{s h}, H_{p a c k}, D_{p a c k}$
1: Make a rectangle $R e$ centered at origin with sides $\left(N_{\text {arc }}^{x}+1\right) w_{\text {arc }} \times\left(N_{\text {arc }}^{y}+1\right)\left(l_{\text {arc }}+m_{\text {arc }}\right)$;
2: for $j=0$ to $N_{\text {arc }}^{y}-1$ do
3: Cut a rectangular hole of dimensions $k w_{\text {arc }} \times l_{\text {arc }}$ into $R e$ centered at $S_{h}=\left(-\left(l_{\text {arc }}+m_{\text {arc }}\right) \frac{N_{\text {arc }}}{2}+j\left(l_{\text {arc }}+m_{\text {arc }}\right), 0,0\right)$;
4: for $i=0$ to $N_{\text {arc }}^{x}-1$ do
5: $\quad$ Create an arc $A_{i j}$ of dimensions $I_{\text {arc }}$ and $h_{\text {arc }}$ and with center at $S_{\text {arc }}=\left(-\left(l_{\text {arc }}+m_{\text {arc }}\right) \frac{N_{\text {arc }}^{y}}{2}+j\left(l_{\text {arc }}+m_{\text {arc }}\right),-\frac{w_{\text {arc }}}{2} N_{\text {arc }}^{\times}+i w_{\text {arc }},(-1)^{i}\left(R_{\text {arc }}-h_{\text {arc }}\right)\right)$;
6: end for
7: end for
8: Join all arcs $A_{i j}$ and rectangle $R e$ into one sheet $S \leftarrow\left(\bigcup A_{i j}\right) \bigcup R e$;
9: Make a rectangular cuboid $R c$ with center at origin and of dimensions $D_{\text {pack }} \times H_{\text {pack }} \times 3 h_{\text {arc }}$
10: Rotate $S$ by an angle $\theta_{c h}$ around $z$ axis;
11: Create first sheet of a packing $S_{0}$ by intersecting sheet $S$ with Rc. $S_{0} \leftarrow S \cap R c$;
12: for $i=1$ to $N_{s h}$ do
13: Create $S_{i}$ by copying $S_{0}$;
14: Translate $S_{i}$ by $-\frac{\left(N_{s h}-1\right)}{2} 2 h_{\text {arc }}+2 h_{\text {arc }} i$ on the $z$ axis;
15: if $i \bmod 2=1$ then
16: Rotate $S_{i}$ by $\pi$ around the $y$ axis;
17: end if
18: Create a rectangular cuboid $R c_{i}$, centered at origin of dimensions $\sqrt{\frac{D_{\text {pack }}^{2}}{4}}-\left(-\left(N_{\text {sh }}-1\right) h_{\text {arc }}+2 h_{\text {arc }} i\right)^{2} \times H_{\text {pack }} \times D_{\text {pack }}$
19: Cut ${ }^{4} S_{i}$ by making an intersection of $S_{i}$ with $R c_{i}: S_{i} \leftarrow S_{i} \cap R c_{i}$;
20: end for
21: Create packing $P$ by joining all sheets $S_{i}$ together: $P \leftarrow\left(\bigcup_{i=1}^{N_{s h}} S_{i}\right)$;
22: Extrude packing $P$ by $t h_{\text {arc }}$ in the $z$ axis direction;
23: return Geometry representation of the packed bed suitable for the snappyHexMesh utility


Figure 2 : Depiction of parameters required to define the SuperPak type packing geometry

## Acknowledgments

This work was supported by The Ministry of Education, Youth and Sports from the Large Infrastructures for Research, Experimental Development and Innovations project "IT4Innovations National Supercomputing CenterLM2015070". The work of M. Isoz was supported by the Centre of Excellence for nonlinear dynamic behaviou of advanced materials in engineering CZ.02.1.01/0.0/0.0/15-003/0000493 (Excellent Research Teams) in the framework of Operational Programme Research, Development and Education. Finally, the authors would like to express theirs deepest thanks to the Mass Transfer Laboratory of UCT Prague for providing experimental data for the model validation as well as for granting an access to their experimental equipment and for many helpful consults on the studied topic.

Simulation set up
To estimate dry pressure losses, we need to solve a set of isothermal, turbulent, steady-state Navier-Stokes equations for an incompressible Newtonian fluid [5],

$$
\begin{aligned}
\nabla \cdot(\overline{\mathbf{U}} \otimes \overline{\mathbf{U}})-\nabla \cdot\left(\overline{\mathbb{T}}+\mathbb{T}^{\prime}\right) & =-\nabla \bar{p} \\
\nabla \cdot \overline{\mathbf{U}} & =0,
\end{aligned}
$$

where $\mathbb{T}^{\prime}$ is the Reynolds stress tensor. In this work we used the $k-\omega$ SST model [4] for the closure of the problem
The flow governing equations together with the equations for the turbulence variables $k$ and $\omega$ were solved via the simpleFoam solver from the OpenFOAM toolbox. The used finite volume (FV) mesh was created using the snappyHexMesh software, which is available in the OpenFOAM installation. The needed representation of a packing geometry in STL format was prepared via SuperPak type packing geometry generation algorithm implemented in the Blender software. The applied boundary conditions are listed in Tab. 1.

$$
\begin{aligned}
& \text { Table 1: Applied boundary conditions. The column height and } \\
& \text { radius are denoted as } H_{\text {col }} \text { and } r_{\text {col }} \text {, respectively. The symbol } \mathbf{S}_{f} \\
& \text { marks an outer normal vector to the boundary. } \\
& k_{0}=\frac{3}{2}\left(u_{f} l_{0}\right)^{2} I_{0}=0.0853 \mathrm{Re}^{-0.0727} \\
& \operatorname{Re}=\frac{u_{f} l_{\text {arc }}}{\nu} \quad u_{f}=\frac{u_{i}}{\varepsilon_{\mathrm{pk}} \sin \theta_{\mathrm{ch}}} \\
& \omega_{0}=\frac{\nu}{\frac{\epsilon_{0}}{k_{0}}} \quad \epsilon_{0}=\frac{\frac{\varepsilon_{\text {pl }} \sin \theta_{\text {ch }}}{0.1643 k_{0}^{3 / 2}}}{0.07 l_{\text {arc }}}
\end{aligned}
$$

Model validation

(a) Dependence of pressure drop on inlet velocity
(b) Relative errors of calculated pressure drops

Figure 3 : Comparison of measured and computed dry pressure loss.


