
Introduction to Numerical
Methods

Lecture notes for MATH 3311

Jeffrey R. Chasnov

The Hong Kong University of

Science and Technology

The Hong Kong University of Science and Technology
Department of Mathematics
Clear Water Bay, Kowloon

Hong Kong

Copyright c○ 2012 by Jeffrey Robert Chasnov

This work is licensed under the Creative Commons Attribution 3.0 Hong Kong License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/hk/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,

California, 94105, USA.

Preface

What follows are my lecture notes for Math 3311: Introduction to Numerical
Methods, taught at the Hong Kong University of Science and Technology. Math
3311, with two lecture hours per week, is primarily for non-mathematics majors
and is required by several engineering departments.

All web surfers are welcome to download these notes at
http://www.math.ust.hk/~machas/numerical-methods.pdf

and to use the notes freely for teaching and learning. I welcome any comments,
suggestions or corrections sent by email to jeffrey.chasnov@ust.hk.

iii

http://www.math.ust.hk/~machas/numerical-methods.pdf

Contents

1 IEEE Arithmetic 1

1.1 Definitions . 1

1.2 Numbers with a decimal or binary point 1

1.3 Examples of binary numbers . 1

1.4 Hex numbers . 1

1.5 4-bit unsigned integers as hex numbers 2

1.6 IEEE single precision format: . 2

1.7 Special numbers . 3

1.8 Examples of computer numbers 3

1.9 Inexact numbers . 4

1.9.1 Find smallest positive integer that is not exact in single
precision . 4

1.10 Machine epsilon . 5

1.11 IEEE double precision format . 5

1.12 Roundoff error example . 6

2 Root Finding 7

2.1 Bisection Method . 7

2.2 Newton’s Method . 7

2.3 Secant Method . 8

2.3.1 Estimate
√
2 = 1.41421356 using Newton’s Method 8

2.3.2 Example of fractals using Newton’s Method 8

2.4 Order of convergence . 9

2.4.1 Newton’s Method . 9

2.4.2 Secant Method . 10

3 Systems of equations 13

3.1 Gaussian Elimination . 13

3.2 𝐿𝑈 decomposition . 14

3.3 Partial pivoting . 17

3.4 Operation counts . 18

3.5 System of nonlinear equations . 21

4 Least-squares approximation 23

4.1 Fitting a straight line . 23

4.2 Fitting to a linear combination of functions 24

v

vi CONTENTS

5 Interpolation 27
5.1 Polynomial interpolation . 27

5.1.1 Vandermonde polynomial 27
5.1.2 Lagrange polynomial . 28
5.1.3 Newton polynomial . 28

5.2 Piecewise linear interpolation . 29
5.3 Cubic spline interpolation . 30
5.4 Multidimensional interpolation 33

6 Integration 35
6.1 Elementary formulas . 35

6.1.1 Midpoint rule . 35
6.1.2 Trapezoidal rule . 36
6.1.3 Simpson’s rule . 37

6.2 Composite rules . 37
6.2.1 Trapezoidal rule . 37
6.2.2 Simpson’s rule . 38

6.3 Local versus global error . 38
6.4 Adaptive integration . 39

7 Ordinary differential equations 43
7.1 Examples of analytical solutions 43

7.1.1 Initial value problem . 43
7.1.2 Boundary value problems 44
7.1.3 Eigenvalue problem . 45

7.2 Numerical methods: initial value problem 46
7.2.1 Euler method . 46
7.2.2 Modified Euler method 46
7.2.3 Second-order Runge-Kutta methods 47
7.2.4 Higher-order Runge-Kutta methods 48
7.2.5 Adaptive Runge-Kutta Methods 49
7.2.6 System of differential equations 50

7.3 Numerical methods: boundary value problem 51
7.3.1 Finite difference method 51
7.3.2 Shooting method . 53

7.4 Numerical methods: eigenvalue problem 54
7.4.1 Finite difference method 54
7.4.2 Shooting method . 56

Chapter 1

IEEE Arithmetic

1.1 Definitions

Bit = 0 or 1
Byte = 8 bits
Word = Reals: 4 bytes (single precision)

8 bytes (double precision)
= Integers: 1, 2, 4, or 8 byte signed

1, 2, 4, or 8 byte unsigned

1.2 Numbers with a decimal or binary point

� � � � · � � � �
Decimal: 103 102 101 100 10−1 10−2 10−3 10−4

Binary: 23 22 21 20 2−1 2−2 2−3 2−4

1.3 Examples of binary numbers

Decimal Binary
1 1
2 10
3 11
4 100
0.5 0.1
1.5 1.1

1.4 Hex numbers

{0, 1, 2, 3, . . . , 9, 10, 11, 12, 13, 14, 15} = {0, 1, 2, 3.......9, a,b,c,d,e,f}

1

2 CHAPTER 1. IEEE ARITHMETIC

1.5 4-bit unsigned integers as hex numbers

Decimal Binary Hex
1 0001 1
2 0010 2
3 0011 3
...

...
...

10 1010 a
...

...
...

15 1111 f

1.6 IEEE single precision format:

𝑠⏞ ⏟
�
0

𝑒⏞ ⏟
�
1
�
2
�
3
�
4
�
5
�
6
�
7
�
8

𝑓⏞ ⏟
�
9
· · · · · · · ·�

31

= (−1)𝑠 × 2𝑒−127 × 1.f

where s = sign
e = biased exponent
p=e-127 = exponent
1.f = significand (use binary point)

1.7. SPECIAL NUMBERS 3

1.7 Special numbers

Smallest exponent: e = 0000 0000, represents denormal numbers (1.f → 0.f)
Largest exponent: e = 1111 1111, represents ±∞, if f = 0

e = 1111 1111, represents NaN, if f ̸= 0

Number Range: e = 1111 1111 = 28 - 1 = 255 reserved
e = 0000 0000 = 0 reserved

so, p = e - 127 is
1 - 127 ≤ p ≤ 254-127
-126 ≤ p ≤ 127

Smallest positive normal number
= 1.0000 0000 · · · · ·· 0000× 2−126

≃ 1.2 × 10−38

bin: 0000 0000 1000 0000 0000 0000 0000 0000
hex: 00800000
MATLAB: realmin(’single’)

Largest positive number
= 1.1111 1111 · · · · ·· 1111× 2127

= (1 + (1− 2−23))× 2127

≃ 2128 ≃ 3.4× 1038

bin: 0111 1111 0111 1111 1111 1111 1111 1111
hex: 7f7fffff
MATLAB: realmax(’single’)

Zero
bin: 0000 0000 0000 0000 0000 0000 0000 0000
hex: 00000000

Subnormal numbers
Allow 1.f → 0.f (in software)
Smallest positive number = 0.0000 0000 · · · · · 0001 × 2−126

= 2−23 × 2−126 ≃ 1.4 × 10−45

1.8 Examples of computer numbers

What is 1.0, 2.0 & 1/2 in hex ?

1.0 = (−1)0 × 2(127−127) × 1.0
Therefore, 𝑠 = 0, 𝑒 = 0111 1111, 𝑓 = 0000 0000 0000 0000 0000 000
bin: 0011 1111 1000 0000 0000 0000 0000 0000
hex: 3f80 0000

2.0 = (−1)0 × 2(128−127) × 1.0
Therefore, 𝑠 = 0, 𝑒 = 1000 0000, 𝑓 = 0000 0000 0000 0000 0000 000
bin: 0100 00000 1000 0000 0000 0000 0000 0000
hex: 4000 0000

4 CHAPTER 1. IEEE ARITHMETIC

1/2 = (−1)0 × 2(126−127) × 1.0
Therefore, 𝑠 = 0, 𝑒 = 0111 1110, 𝑓 = 0000 0000 0000 0000 0000 000
bin: 0011 1111 0000 0000 0000 0000 0000 0000
hex: 3f00 0000

1.9 Inexact numbers

Example:
1

3
= (−1)0 × 1

4
× (1 +

1

3
),

so that 𝑝 = 𝑒 − 127 = −2 and 𝑒 = 125 = 128 − 3, or in binary, 𝑒 = 0111 1101.
How is 𝑓 = 1/3 represented in binary? To compute binary number, multiply
successively by 2 as follows:

0.333 . . . 0.

0.666 . . . 0.0

1.333 . . . 0.01

0.666 . . . 0.010

1.333 . . . 0.0101

etc.

so that 1/3 exactly in binary is 0.010101 With only 23 bits to represent 𝑓 ,
the number is inexact and we have

𝑓 = 01010101010101010101011,

where we have rounded to the nearest binary number (here, rounded up). The
machine number 1/3 is then represented as

00111110101010101010101010101011

or in hex
3𝑒𝑎𝑎𝑎𝑎𝑎𝑏.

1.9.1 Find smallest positive integer that is not exact in
single precision

Let 𝑁 be the smallest positive integer that is not exact. Now, I claim that

𝑁 − 2 = 223 × 1.11 . . . 1,

and
𝑁 − 1 = 224 × 1.00 . . . 0.

The integer 𝑁 would then require a one-bit in the 2−24 position, which is not
available. Therefore, the smallest positive integer that is not exact is 224 + 1 =
16 777 217. In MATLAB, single(224) has the same value as single(224+1). Since
single(224+1) is exactly halfway between the two consecutive machine numbers
224 and 224+2, MATLAB rounds to the number with a final zero-bit in f, which
is 224.

1.10. MACHINE EPSILON 5

1.10 Machine epsilon

Machine epsilon (𝜖mach) is the distance between 1 and the next largest number.
If 0 ≤ 𝛿 < 𝜖mach/2, then 1 + 𝛿 = 1 in computer math. Also since

𝑥+ 𝑦 = 𝑥(1 + 𝑦/𝑥),

if 0 ≤ 𝑦/𝑥 < 𝜖mach/2, then 𝑥+ 𝑦 = 𝑥 in computer math.

Find 𝜖mach

The number 1 in the IEEE format is written as

1 = 20 × 1.000 . . . 0,

with 23 0’s following the binary point. The number just larger than 1 has a 1
in the 23rd position after the decimal point. Therefore,

𝜖mach = 2−23 ≈ 1.192× 10−7.

What is the distance between 1 and the number just smaller than 1? Here,
the number just smaller than one can be written as

2−1 × 1.111 . . . 1 = 2−1(1 + (1− 2−23)) = 1− 2−24

Therefore, this distance is 2−24 = 𝜖mach/2.
The spacing between numbers is uniform between powers of 2, with logarith-

mic spacing of the powers of 2. That is, the spacing of numbers between 1 and
2 is 2−23, between 2 and 4 is 2−22, between 4 and 8 is 2−21, etc. This spacing
changes for denormal numbers, where the spacing is uniform all the way down
to zero.

Find the machine number just greater than 5

A rough estimate would be 5(1+ 𝜖mach) = 5+5𝜖mach, but this is not exact. The
exact answer can be found by writing

5 = 22(1 +
1

4
),

so that the next largest number is

22(1 +
1

4
+ 2−23) = 5 + 2−21 = 5 + 4𝜖mach.

1.11 IEEE double precision format

Most computations take place in double precision, where round-off error is re-
duced, and all of the above calculations in single precision can be repeated for
double precision. The format is

𝑠⏞ ⏟
�
0

𝑒⏞ ⏟
�
1
�
2
�
3
�
4
�
5
�
6
�
7
�
8
�
9
�
10
�
11

𝑓⏞ ⏟
�
12
· · · · · · · ·�

63

6 CHAPTER 1. IEEE ARITHMETIC

= (−1)𝑠 × 2𝑒−1023 × 1.f

where s = sign
e = biased exponent
p=e-1023 = exponent
1.f = significand (use binary point)

1.12 Roundoff error example

Consider solving the quadratic equation

𝑥2 + 2𝑏𝑥− 1 = 0,

where 𝑏 is a parameter. The quadratic formula yields the two solutions

𝑥± = −𝑏±
√︀
𝑏2 + 1.

Consider the solution with 𝑏 > 0 and 𝑥 > 0 (the 𝑥+ solution) given by

𝑥 = −𝑏+
√︀

𝑏2 + 1. (1.1)

As 𝑏 → ∞,

𝑥 = −𝑏+
√︀
𝑏2 + 1

= −𝑏+ 𝑏
√︀
1 + 1/𝑏2

= 𝑏(
√︀

1 + 1/𝑏2 − 1)

≈ 𝑏

(︂
1 +

1

2𝑏2
− 1

)︂
=

1

2𝑏
.

Now in double precision, realmin ≈ 2.2 × 10−308 and we would like 𝑥 to be
accurate to this value before it goes to 0 via denormal numbers. Therefore,
𝑥 should be computed accurately to 𝑏 ≈ 1/(2 × realmin) ≈ 2 × 10307. What
happens if we compute (1.1) directly? Then 𝑥 = 0 when 𝑏2 + 1 = 𝑏2, or
1 + 1/𝑏2 = 1. That is 1/𝑏2 = 𝜖mach/2, or 𝑏 =

√
2/
√
𝜖mach ≈ 108.

For a subroutine written to compute the solution of a quadratic for a general
user, this is not good enough. The way for a software designer to solve this
problem is to compute the solution for 𝑥 as

𝑥 =
1

𝑏+
√
𝑏2 + 1

.

In this form, if 𝑏2+1 = 𝑏2, then 𝑥 = 1/2𝑏 which is the correct asymptotic form.

Chapter 2

Root Finding

Solve 𝑓(𝑥) = 0 for 𝑥, when an explicit analytical solution is impossible.

2.1 Bisection Method

The bisection method is the easiest to numerically implement and almost always
works. The main disadvantage is that convergence is slow. If the bisection
method results in a computer program that runs too slow, then other faster
methods may be chosen; otherwise it is a good choice of method.

We want to construct a sequence 𝑥0, 𝑥1, 𝑥2, . . . that converges to the root
𝑥 = 𝑟 that solves 𝑓(𝑥) = 0. We choose 𝑥0 and 𝑥1 such that 𝑥0 < 𝑟 < 𝑥1. We
say that 𝑥0 and 𝑥1 bracket the root. With 𝑓(𝑟) = 0, we want 𝑓(𝑥0) and 𝑓(𝑥1)
to be of opposite sign, so that 𝑓(𝑥0)𝑓(𝑥1) < 0. We then assign 𝑥2 to be the
midpoint of 𝑥0 and 𝑥1, that is 𝑥2 = (𝑥0 + 𝑥1)/2, or

𝑥2 = 𝑥0 +
𝑥1 − 𝑥0

2
.

The sign of 𝑓(𝑥2) can then be determined. The value of 𝑥3 is then chosen as
either the midpoint of 𝑥0 and 𝑥2 or as the midpoint of 𝑥2 and 𝑥1, depending on
whether 𝑥0 and 𝑥2 bracket the root, or 𝑥2 and 𝑥1 bracket the root. The root,
therefore, stays bracketed at all times. The algorithm proceeds in this fashion
and is typically stopped when the increment to the left side of the bracket
(above, given by (𝑥1 − 𝑥0)/2) is smaller than some required precision.

2.2 Newton’s Method

This is the fastest method, but requires analytical computation of the derivative
of 𝑓(𝑥). Also, the method may not always converge to the desired root.

We can derive Newton’s Method graphically, or by a Taylor series. We again
want to construct a sequence 𝑥0, 𝑥1, 𝑥2, . . . that converges to the root 𝑥 = 𝑟.
Consider the 𝑥𝑛+1 member of this sequence, and Taylor series expand 𝑓(𝑥𝑛+1)
about the point 𝑥𝑛. We have

𝑓(𝑥𝑛+1) = 𝑓(𝑥𝑛) + (𝑥𝑛+1 − 𝑥𝑛)𝑓
′(𝑥𝑛) +

7

8 CHAPTER 2. ROOT FINDING

To determine 𝑥𝑛+1, we drop the higher-order terms in the Taylor series, and
assume 𝑓(𝑥𝑛+1) = 0. Solving for 𝑥𝑛+1, we have

𝑥𝑛+1 = 𝑥𝑛 − 𝑓(𝑥𝑛)

𝑓 ′(𝑥𝑛)
.

Starting Newton’s Method requires a guess for 𝑥0, hopefully close to the root
𝑥 = 𝑟.

2.3 Secant Method

The Secant Method is second best to Newton’s Method, and is used when a
faster convergence than Bisection is desired, but it is too difficult or impossible
to take an analytical derivative of the function 𝑓(𝑥). We write in place of 𝑓 ′(𝑥𝑛),

𝑓 ′(𝑥𝑛) ≈
𝑓(𝑥𝑛)− 𝑓(𝑥𝑛−1)

𝑥𝑛 − 𝑥𝑛−1
.

Starting the Secant Method requires a guess for both 𝑥0 and 𝑥1.

2.3.1 Estimate
√
2 = 1.41421356 using Newton’s Method

The
√
2 is the zero of the function 𝑓(𝑥) = 𝑥2 − 2. To implement Newton’s

Method, we use 𝑓 ′(𝑥) = 2𝑥. Therefore, Newton’s Method is the iteration

𝑥𝑛+1 = 𝑥𝑛 − 𝑥2
𝑛 − 2

2𝑥𝑛
.

We take as our initial guess 𝑥0 = 1. Then

𝑥1 = 1− −1

2
=

3

2
= 1.5,

𝑥2 =
3

2
−

9
4 − 2

3
=

17

12
= 1.416667,

𝑥3 =
17

12
−

172

122 − 2
17
6

=
577

408
= 1.41426.

2.3.2 Example of fractals using Newton’s Method

Consider the complex roots of the equation 𝑓(𝑧) = 0, where

𝑓(𝑧) = 𝑧3 − 1.

These roots are the three cubic roots of unity. With

𝑒𝑖2𝜋𝑛 = 1, 𝑛 = 0, 1, 2, . . .

the three unique cubic roots of unity are given by

1, 𝑒𝑖2𝜋/3, 𝑒𝑖4𝜋/3.

With
𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃,

2.4. ORDER OF CONVERGENCE 9

and cos (2𝜋/3) = −1/2, sin (2𝜋/3) =
√
3/2, the three cubic roots of unity are

𝑟1 = 1, 𝑟2 = −1

2
+

√
3

2
𝑖, 𝑟3 = −1

2
−

√
3

2
𝑖.

The interesting idea here is to determine which initial values of 𝑧0 in the complex
plane converge to which of the three cubic roots of unity.

Newton’s method is

𝑧𝑛+1 = 𝑧𝑛 − 𝑧3𝑛 − 1

3𝑧2𝑛
.

If the iteration converges to 𝑟1, we color 𝑧0 red; 𝑟2, blue; 𝑟3, green. The result
will be shown in lecture.

2.4 Order of convergence

Let 𝑟 be the root and 𝑥𝑛 be the 𝑛th approximation to the root. Define the error
as

𝜖𝑛 = 𝑟 − 𝑥𝑛.

If for large 𝑛 we have the approximate relationship

|𝜖𝑛+1| = 𝑘|𝜖𝑛|𝑝,

with 𝑘 a positive constant, then we say the root-finding numerical method is of
order 𝑝. Larger values of 𝑝 correspond to faster convergence to the root. The
order of convergence of bisection is one: the error is reduced by approximately
a factor of 2 with each iteration so that

|𝜖𝑛+1| =
1

2
|𝜖𝑛|.

We now find the order of convergence for Newton’s Method and for the Secant
Method.

2.4.1 Newton’s Method

We start with Newton’s Method

𝑥𝑛+1 = 𝑥𝑛 − 𝑓(𝑥𝑛)

𝑓 ′(𝑥𝑛)
.

Subtracting both sides from 𝑟, we have

𝑟 − 𝑥𝑛+1 = 𝑟 − 𝑥𝑛 +
𝑓(𝑥𝑛)

𝑓 ′(𝑥𝑛)
,

or

𝜖𝑛+1 = 𝜖𝑛 +
𝑓(𝑥𝑛)

𝑓 ′(𝑥𝑛)
. (2.1)

10 CHAPTER 2. ROOT FINDING

We use Taylor series to expand the functions 𝑓(𝑥𝑛) and 𝑓 ′(𝑥𝑛) about the root
𝑟, using 𝑓(𝑟) = 0. We have

𝑓(𝑥𝑛) = 𝑓(𝑟) + (𝑥𝑛 − 𝑟)𝑓 ′(𝑟) +
1

2
(𝑥𝑛 − 𝑟)2𝑓 ′′(𝑟) + . . . ,

= −𝜖𝑛𝑓
′(𝑟) +

1

2
𝜖2𝑛𝑓

′′(𝑟) + . . . ;

𝑓 ′(𝑥𝑛) = 𝑓 ′(𝑟) + (𝑥𝑛 − 𝑟)𝑓 ′′(𝑟) +
1

2
(𝑥𝑛 − 𝑟)2𝑓 ′′′(𝑟) + . . . ,

= 𝑓 ′(𝑟)− 𝜖𝑛𝑓
′′(𝑟) +

1

2
𝜖2𝑛𝑓

′′′(𝑟) +

(2.2)

To make further progress, we will make use of the following standard Taylor
series:

1

1− 𝜖
= 1 + 𝜖+ 𝜖2 + . . . , (2.3)

which converges for |𝜖| < 1. Substituting (2.2) into (2.1), and using (2.3) yields

𝜖𝑛+1 = 𝜖𝑛 +
𝑓(𝑥𝑛)

𝑓 ′(𝑥𝑛)

= 𝜖𝑛 +
−𝜖𝑛𝑓

′(𝑟) + 1
2𝜖

2
𝑛𝑓

′′(𝑟) + . . .

𝑓 ′(𝑟)− 𝜖𝑛𝑓 ′′(𝑟) + 1
2𝜖

2
𝑛𝑓

′′′(𝑟) + . . .

= 𝜖𝑛 +
−𝜖𝑛 + 1

2𝜖
2
𝑛
𝑓 ′′(𝑟)
𝑓 ′(𝑟) + . . .

1− 𝜖𝑛
𝑓 ′′(𝑟)
𝑓 ′(𝑟) + . . .

= 𝜖𝑛 +

(︂
−𝜖𝑛 +

1

2
𝜖2𝑛

𝑓 ′′(𝑟)

𝑓 ′(𝑟)
+ . . .

)︂(︂
1 + 𝜖𝑛

𝑓 ′′(𝑟)

𝑓 ′(𝑟)
+ . . .

)︂
= 𝜖𝑛 +

(︂
−𝜖𝑛 + 𝜖2𝑛

(︂
1

2

𝑓 ′′(𝑟)

𝑓 ′(𝑟)
− 𝑓 ′′(𝑟)

𝑓 ′(𝑟)

)︂
+ . . .

)︂
= −1

2

𝑓 ′′(𝑟)

𝑓 ′(𝑟)
𝜖2𝑛 + . . .

Therefore, we have shown that

|𝜖𝑛+1| = 𝑘|𝜖𝑛|2

as 𝑛 → ∞, with

𝑘 =
1

2

⃒⃒⃒⃒
𝑓 ′′(𝑟)

𝑓 ′(𝑟)

⃒⃒⃒⃒
,

provided 𝑓 ′(𝑟) ̸= 0. Newton’s method is thus of order 2 at simple roots.

2.4.2 Secant Method

Determining the order of the Secant Method proceeds in a similar fashion. We
start with

𝑥𝑛+1 = 𝑥𝑛 − (𝑥𝑛 − 𝑥𝑛−1)𝑓(𝑥𝑛)

𝑓(𝑥𝑛)− 𝑓(𝑥𝑛−1)
.

We subtract both sides from 𝑟 and make use of

𝑥𝑛 − 𝑥𝑛−1 = (𝑟 − 𝑥𝑛−1)− (𝑟 − 𝑥𝑛)

= 𝜖𝑛−1 − 𝜖𝑛,

2.4. ORDER OF CONVERGENCE 11

and the Taylor series

𝑓(𝑥𝑛) = −𝜖𝑛𝑓
′(𝑟) +

1

2
𝜖2𝑛𝑓

′′(𝑟) + . . . ,

𝑓(𝑥𝑛−1) = −𝜖𝑛−1𝑓
′(𝑟) +

1

2
𝜖2𝑛−1𝑓

′′(𝑟) + . . . ,

so that

𝑓(𝑥𝑛)− 𝑓(𝑥𝑛−1) = (𝜖𝑛−1 − 𝜖𝑛)𝑓
′(𝑟) +

1

2
(𝜖2𝑛 − 𝜖2𝑛−1)𝑓

′′(𝑟) + . . .

= (𝜖𝑛−1 − 𝜖𝑛)

(︂
𝑓 ′(𝑟)− 1

2
(𝜖𝑛−1 + 𝜖𝑛)𝑓

′′(𝑟) + . . .

)︂
.

We therefore have

𝜖𝑛+1 = 𝜖𝑛 +
−𝜖𝑛𝑓

′(𝑟) + 1
2𝜖

2
𝑛𝑓

′′(𝑟) + . . .

𝑓 ′(𝑟)− 1
2 (𝜖𝑛−1 + 𝜖𝑛)𝑓 ′′(𝑟) + . . .

= 𝜖𝑛 − 𝜖𝑛
1− 1

2𝜖𝑛
𝑓 ′′(𝑟)
𝑓 ′(𝑟) + . . .

1− 1
2 (𝜖𝑛−1 + 𝜖𝑛)

𝑓 ′′(𝑟)
𝑓 ′(𝑟) + . . .

= 𝜖𝑛 − 𝜖𝑛

(︂
1− 1

2
𝜖𝑛

𝑓 ′′(𝑟)

𝑓 ′(𝑟)
+ . . .

)︂(︂
1 +

1

2
(𝜖𝑛−1 + 𝜖𝑛)

𝑓 ′′(𝑟)

𝑓 ′(𝑟)
+ . . .

)︂
= −1

2

𝑓 ′′(𝑟)

𝑓 ′(𝑟)
𝜖𝑛−1𝜖𝑛 + . . . ,

or to leading order

|𝜖𝑛+1| =
1

2

⃒⃒⃒⃒
𝑓 ′′(𝑟)

𝑓 ′(𝑟)

⃒⃒⃒⃒
|𝜖𝑛−1||𝜖𝑛|. (2.4)

The order of convergence is not yet obvious from this equation, and to determine
the scaling law we look for a solution of the form

|𝜖𝑛+1| = 𝑘|𝜖𝑛|𝑝.

From this ansatz, we also have

|𝜖𝑛| = 𝑘|𝜖𝑛−1|𝑝,

and therefore
|𝜖𝑛+1| = 𝑘𝑝+1|𝜖𝑛−1|𝑝

2

.

Substitution into (2.4) results in

𝑘𝑝+1|𝜖𝑛−1|𝑝
2

=
𝑘

2

⃒⃒⃒⃒
𝑓 ′′(𝑟)

𝑓 ′(𝑟)

⃒⃒⃒⃒
|𝜖𝑛−1|𝑝+1.

Equating the coefficient and the power of 𝜖𝑛−1 results in

𝑘𝑝 =
1

2

⃒⃒⃒⃒
𝑓 ′′(𝑟)

𝑓 ′(𝑟)

⃒⃒⃒⃒
,

and
𝑝2 = 𝑝+ 1.

12 CHAPTER 2. ROOT FINDING

The order of convergence of the Secant Method, given by 𝑝, therefore is deter-
mined to be the positive root of the quadratic equation 𝑝2 − 𝑝− 1 = 0, or

𝑝 =
1 +

√
5

2
≈ 1.618,

which coincidentally is a famous irrational number that is called The Golden
Ratio, and goes by the symbol Φ. We see that the Secant Method has an order
of convergence lying between the Bisection Method and Newton’s Method.

Chapter 3

Systems of equations

Consider the system of 𝑛 linear equations and 𝑛 unknowns, given by

𝑎11𝑥1 + 𝑎12𝑥2 + · · ·+ 𝑎1𝑛𝑥𝑛 = 𝑏1,

𝑎21𝑥1 + 𝑎22𝑥2 + · · ·+ 𝑎2𝑛𝑥𝑛 = 𝑏2,

...
...

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + · · ·+ 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛.

We can write this system as the matrix equation

Ax = b,

with

A =

⎛⎜⎜⎜⎝
𝑎11 𝑎12 · · · 𝑎1𝑛
𝑎21 𝑎22 · · · 𝑎2𝑛
...

...
. . .

...
𝑎𝑛1 𝑎𝑛2 · · · 𝑎𝑛𝑛

⎞⎟⎟⎟⎠ , x =

⎛⎜⎜⎜⎝
𝑥1

𝑥2

...
𝑥𝑛

⎞⎟⎟⎟⎠ , b =

⎛⎜⎜⎜⎝
𝑏1
𝑏2
...
𝑏𝑛

⎞⎟⎟⎟⎠ .

3.1 Gaussian Elimination

The standard numerical algorithm to solve a system of linear equations is called
Gaussian Elimination. We can illustrate this algorithm by example.

Consider the system of equations

−3𝑥1 + 2𝑥2 − 𝑥3 = −1,

6𝑥1 − 6𝑥2 + 7𝑥3 = −7,

3𝑥1 − 4𝑥2 + 4𝑥3 = −6.

To perform Gaussian elimination, we form an Augmented Matrix by combining
the matrix A with the column vector b:⎛⎝−3 2 −1 −1

6 −6 7 −7
3 −4 4 −6

⎞⎠ .

Row reduction is then performed on this matrix. Allowed operations are (1)
multiply any row by a constant, (2) add multiple of one row to another row, (3)

13

14 CHAPTER 3. SYSTEMS OF EQUATIONS

interchange the order of any rows. The goal is to convert the original matrix
into an upper-triangular matrix.

We start with the first row of the matrix and work our way down as follows.
First we multiply the first row by 2 and add it to the second row, and add the
first row to the third row: ⎛⎝−3 2 −1 −1

0 −2 5 −9
0 −2 3 −7

⎞⎠ .

We then go to the second row. We multiply this row by −1 and add it to the
third row: ⎛⎝−3 2 −1 −1

0 −2 5 −9
0 0 −2 2

⎞⎠ .

The resulting equations can be determined from the matrix and are given by

−3𝑥1 + 2𝑥2 − 𝑥3 = −1

−2𝑥2 + 5𝑥3 = −9

−2𝑥3 = 2.

These equations can be solved by backward substitution, starting from the last
equation and working backwards. We have

−2𝑥3 = 2 → 𝑥3 = −1

−2𝑥2 = −9− 5𝑥3 = −4 → 𝑥2 = 2,

−3𝑥1 = −1− 2𝑥2 + 𝑥3 = −6 → 𝑥1 = 2.

Therefore, ⎛⎝𝑥1

𝑥2

𝑥3

⎞⎠ =

⎛⎝ 2
2

−1

⎞⎠ .

3.2 𝐿𝑈 decomposition

The process of Gaussian Elimination also results in the factoring of the matrix
A to

A = LU,

where L is a lower triangular matrix and U is an upper triangular matrix.
Using the same matrix A as in the last section, we show how this factorization
is realized. We have⎛⎝−3 2 −1

6 −6 7
3 −4 4

⎞⎠ →

⎛⎝−3 2 −1
0 −2 5
0 −2 3

⎞⎠ = M1A,

where

M1A =

⎛⎝1 0 0
2 1 0
1 0 1

⎞⎠⎛⎝−3 2 −1
6 −6 7
3 −4 4

⎞⎠ =

⎛⎝−3 2 −1
0 −2 5
0 −2 3

⎞⎠ .

3.2. 𝐿𝑈 DECOMPOSITION 15

Note that the matrix M1 performs row elimination on the first column. Two
times the first row is added to the second row and one times the first row is
added to the third row. The entries of the column of M1 come from 2 = −(6/−3)
and 1 = −(3/−3) as required for row elimination. The number −3 is called the
pivot.

The next step is⎛⎝−3 2 −1
0 −2 5
0 −2 3

⎞⎠ →

⎛⎝−3 2 −1
0 −2 5
0 0 −2

⎞⎠ = M2(M1A),

where

M2(M1A) =

⎛⎝ 1 0 0
0 1 0
0 −1 1

⎞⎠⎛⎝−3 2 −1
0 −2 5
0 −2 3

⎞⎠ =

⎛⎝−3 2 −1
0 −2 5
0 0 −2

⎞⎠ .

Here, M2 multiplies the second row by −1 = −(−2/ − 2) and adds it to the
third row. The pivot is −2.

We now have
M2M1A = U

or
A = M−1

1 M−1
2 U.

The inverse matrices are easy to find. The matrix M1 multiples the first row by
2 and adds it to the second row, and multiplies the first row by 1 and adds it
to the third row. To invert these operations, we need to multiply the first row
by −2 and add it to the second row, and multiply the first row by −1 and add
it to the third row. To check, with

M1M
−1
1 = I,

we have ⎛⎝ 1 0 0
2 1 0
1 0 1

⎞⎠⎛⎝ 1 0 0
−2 1 0
−1 0 1

⎞⎠ =

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠ .

Similarly,

M−1
2 =

⎛⎝1 0 0
0 1 0
0 1 1

⎞⎠
Therefore,

L = M−1
1 M−1

2

is given by

L =

⎛⎝ 1 0 0
−2 1 0
−1 0 1

⎞⎠⎛⎝1 0 0
0 1 0
0 1 1

⎞⎠ =

⎛⎝ 1 0 0
−2 1 0
−1 1 1

⎞⎠ ,

which is lower triangular. The off-diagonal elements of M−1
1 and M−1

2 are simply
combined to form L. Our LU decomposition is therefore⎛⎝−3 2 −1

6 −6 7
3 −4 4

⎞⎠ =

⎛⎝ 1 0 0
−2 1 0
−1 1 1

⎞⎠⎛⎝−3 2 −1
0 −2 5
0 0 −2

⎞⎠ .

16 CHAPTER 3. SYSTEMS OF EQUATIONS

Another nice feature of the LU decomposition is that it can be done by over-
writing A, therefore saving memory if the matrix A is very large.

The LU decomposition is useful when one needs to solve Ax = b for x when
A is fixed and there are many different b’s. First one determines L and U using
Gaussian elimination. Then one writes

(LU)x = L(Ux) = b.

We let
y = Ux,

and first solve
Ly = b

for y by forward substitution. We then solve

Ux = y

for x by backward substitution. When we count operations, we will see that
solving (LU)x = b is significantly faster once L and U are in hand than solving
Ax = b directly by Gaussian elimination.

We now illustrate the solution of LUx = b using our previous example,
where

L =

⎛⎝ 1 0 0
−2 1 0
−1 1 1

⎞⎠ , U =

⎛⎝−3 2 −1
0 −2 5
0 0 −2

⎞⎠ , b =

⎛⎝−1
−7
−6

⎞⎠ .

With y = Ux, we first solve Ly = b, that is⎛⎝ 1 0 0
−2 1 0
−1 1 1

⎞⎠⎛⎝𝑦1
𝑦2
𝑦3

⎞⎠ =

⎛⎝−1
−7
−6

⎞⎠ .

Using forward substitution

𝑦1 = −1,

𝑦2 = −7 + 2𝑦1 = −9,

𝑦3 = −6 + 𝑦1 − 𝑦2 = 2.

We now solve Ux = y, that is⎛⎝−3 2 −1
0 −2 5
0 0 −2

⎞⎠⎛⎝𝑥1

𝑥2

𝑥3

⎞⎠ =

⎛⎝−1
−9
2

⎞⎠ .

Using backward substitution,

−2𝑥3 = 2 → 𝑥3 = −1,

−2𝑥2 = −9− 5𝑥3 = −4 → 𝑥2 = 2,

−3𝑥1 = −1− 2𝑥2 + 𝑥3 = −6 → 𝑥1 = 2,

and we have once again determined⎛⎝𝑥1

𝑥2

𝑥3

⎞⎠ =

⎛⎝ 2
2

−1

⎞⎠ .

3.3. PARTIAL PIVOTING 17

3.3 Partial pivoting

When performing Gaussian elimination, the diagonal element that one uses
during the elimination procedure is called the pivot. To obtain the correct
multiple, one uses the pivot as the divisor to the elements below the pivot.
Gaussian elimination in this form will fail if the pivot is zero. In this situation,
a row interchange must be performed.

Even if the pivot is not identically zero, a small value can result in big round-
off errors. For very large matrices, one can easily lose all accuracy in the solution.
To avoid these round-off errors arising from small pivots, row interchanges are
made, and this technique is called partial pivoting (partial pivoting is in contrast
to complete pivoting, where both rows and columns are interchanged). We will
illustrate by example the LU decomposition using partial pivoting.

Consider

A =

⎛⎝−2 2 −1
6 −6 7
3 −8 4

⎞⎠ .

We interchange rows to place the largest element (in absolute value) in the pivot,
or 𝑎11, position. That is,

A →

⎛⎝ 6 −6 7
−2 2 −1
3 −8 4

⎞⎠ = P12A,

where

P12 =

⎛⎝0 1 0
1 0 0
0 0 1

⎞⎠
is a permutation matrix that when multiplied on the left interchanges the first
and second rows of a matrix. Note that P−1

12 = P12. The elimination step is
then

P12A →

⎛⎝6 −6 7
0 0 4/3
0 −5 1/2

⎞⎠ = M1P12A,

where

M1 =

⎛⎝ 1 0 0
1/3 1 0

−1/2 0 1

⎞⎠ .

The final step requires one more row interchange:

M1P12A →

⎛⎝6 −6 7
0 −5 1/2
0 0 4/3

⎞⎠ = P23M1P12A = U.

Since the permutation matrices given by P are their own inverses, we can write
our result as

(P23M1P23)P23P12A = U.

18 CHAPTER 3. SYSTEMS OF EQUATIONS

Multiplication of M on the left by P interchanges rows while multiplication on
the right by P interchanges columns. That is,

P23

⎛⎝ 1 0 0
1/3 1 0

−1/2 0 1

⎞⎠P23 =

⎛⎝ 1 0 0
−1/2 0 1
1/3 1 0

⎞⎠P23 =

⎛⎝ 1 0 0
−1/2 1 0
1/3 0 1

⎞⎠ .

The net result on M1 is an interchange of the nondiagonal elements 1/3 and
−1/2.

We can then multiply by the inverse of (P23M1P23) to obtain

P23P12A = (P23M1P23)
−1U,

which we write as
PA = LU.

Instead of L, MATLAB will write this as

A = (P−1L)U.

For convenience, we will just denote (P−1L) by L, but by L here we mean a
permutated lower triangular matrix.

For example, in MATLAB, to solve Ax = b for x using Gaussian elimination,
one types

x = A ∖ b;

where ∖ solves for x using the most efficient algorithm available, depending on
the form of A. If A is a general 𝑛× 𝑛 matrix, then first the LU decomposition
of A is found using partial pivoting, and then 𝑥 is determined from permuted
forward and backward substitution. If A is upper or lower triangular, then
forward or backward substitution (or their permuted version) is used directly.

If there are many different right-hand-sides, one would first directly find the
LU decomposition of A using a function call, and then solve using ∖. That is,
one would iterate for different b’s the following expressions:

[LU] = lu(A);

y = L ∖ b;
x = U ∖ 𝑦;

where the second and third lines can be shortened to

x = U ∖ (L ∖ b);

where the parenthesis are required. In lecture, I will demonstrate these solutions
in MATLAB using the matrix A = [−2, 2,−1; 6,−6, 7; 3,−8, 4]; which is the
example in the notes.

3.4 Operation counts

To estimate how much computational time is required for an algorithm, one can
count the number of operations required (multiplications, divisions, additions
and subtractions). Usually, what is of interest is how the algorithm scales with

3.4. OPERATION COUNTS 19

the size of the problem. For example, suppose one wants to multiply two full
𝑛× 𝑛 matrices. The calculation of each element requires 𝑛 multiplications and
𝑛 − 1 additions, or say 2𝑛 − 1 operations. There are 𝑛2 elements to compute
so that the total operation count is 𝑛2(2𝑛− 1). If 𝑛 is large, we might want to
know what will happen to the computational time if 𝑛 is doubled. What matters
most is the fastest-growing, leading-order term in the operation count. In this
matrix multiplication example, the operation count is 𝑛2(2𝑛 − 1) = 2𝑛3 − 𝑛2,
and the leading-order term is 2𝑛3. The factor of 2 is unimportant for the scaling,
and we say that the algorithm scales like O(𝑛3), which is read as “big Oh of n
cubed.” When using the big-Oh notation, we will drop both lower-order terms
and constant multipliers.

The big-Oh notation tells us how the computational time of an algorithm
scales. For example, suppose that the multiplication of two large 𝑛×𝑛 matrices
took a computational time of 𝑇𝑛 seconds. With the known operation count
going like O(𝑛3), we can write

𝑇𝑛 = 𝑘𝑛3

for some unknown constant 𝑘. To determine how long multiplication of two
2𝑛× 2𝑛 matrices will take, we write

𝑇2𝑛 = 𝑘(2𝑛)3

= 8𝑘𝑛3

= 8𝑇𝑛,

so that doubling the size of the matrix is expected to increase the computational
time by a factor of 23 = 8.

Running MATLAB on my computer, the multiplication of two 2048× 2048
matrices took about 0.75 sec. The multiplication of two 4096 × 4096 matrices
took about 6 sec, which is 8 times longer. Timing of code in MATLAB can be
found using the built-in stopwatch functions tic and toc.

What is the operation count and therefore the scaling of Gaussian elimina-
tion? Consider an elimination step with the pivot in the 𝑖th row and 𝑖th column.
There are both 𝑛− 𝑖 rows below the pivot and 𝑛− 𝑖 columns to the right of the
pivot. To perform elimination of one row, each matrix element to the right of
the pivot must be multiplied by a factor and added to the row underneath. This
must be done for all the rows. There are therefore (𝑛− 𝑖)(𝑛− 𝑖) multiplication-
additions to be done for this pivot. Since we are interested in only the scaling
of the algorithm, I will just count a multiplication-addition as one operation.

To find the total operation count, we need to perform elimination using 𝑛−1
pivots, so that

op. counts =

𝑛−1∑︁
𝑖=1

(𝑛− 𝑖)2

= (𝑛− 1)2 + (𝑛− 2)2 + . . . (1)2

=

𝑛−1∑︁
𝑖=1

𝑖2.

20 CHAPTER 3. SYSTEMS OF EQUATIONS

Three summation formulas will come in handy. They are

𝑛∑︁
𝑖=1

1 = 𝑛,

𝑛∑︁
𝑖=1

𝑖 =
1

2
𝑛(𝑛+ 1),

𝑛∑︁
𝑖=1

𝑖2 =
1

6
𝑛(2𝑛+ 1)(𝑛+ 1),

which can be proved by mathematical induction, or derived by some tricks.
The operation count for Gaussian elimination is therefore

op. counts =

𝑛−1∑︁
𝑖=1

𝑖2

=
1

6
(𝑛− 1)(2𝑛− 1)(𝑛).

The leading-order term is therefore 𝑛3/3, and we say that Gaussian elimination
scales like O(𝑛3). Since LU decomposition with partial pivoting is essentially
Gaussian elimination, that algorithm also scales like O(𝑛3).

However, once the LU decomposition of a matrix A is known, the solution
of Ax = b can proceed by a forward and backward substitution. How does
a backward substitution, say, scale? For backward substitution, the matrix
equation to be solved is of the form⎛⎜⎜⎜⎜⎜⎝

𝑎1,1 𝑎1,2 · · · 𝑎1,𝑛−1 𝑎1,𝑛
0 𝑎2,2 · · · 𝑎2,𝑛−1 𝑎2,𝑛
...

...
. . .

...
...

0 0 · · · 𝑎𝑛−1,𝑛−1 𝑎𝑛−1,𝑛

0 0 · · · 0 𝑎𝑛,𝑛

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
𝑥1

𝑥2

...
𝑥𝑛−1

𝑥𝑛

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
𝑏1
𝑏2
...

𝑏𝑛−1

𝑏𝑛

⎞⎟⎟⎟⎟⎟⎠ .

The solution for 𝑥𝑖 is found after solving for 𝑥𝑗 with 𝑗 > 𝑖. The explicit solution
for 𝑥𝑖 is given by

𝑥𝑖 =
1

𝑎𝑖,𝑖

⎛⎝𝑏𝑖 −
𝑛∑︁

𝑗=𝑖+1

𝑎𝑖,𝑗𝑥𝑗

⎞⎠ .

The solution for 𝑥𝑖 requires 𝑛 − 𝑖 + 1 multiplication-additions, and since this
must be done for 𝑛 such 𝑖′𝑠, we have

op. counts =

𝑛∑︁
𝑖=1

𝑛− 𝑖+ 1

= 𝑛+ (𝑛− 1) + · · ·+ 1

=

𝑛∑︁
𝑖=1

𝑖

=
1

2
𝑛(𝑛+ 1).

3.5. SYSTEM OF NONLINEAR EQUATIONS 21

The leading-order term is 𝑛2/2 and the scaling of backward substitution is
O(𝑛2). After the LU decomposition of a matrix A is found, only a single forward
and backward substitution is required to solve Ax = b, and the scaling of the
algorithm to solve this matrix equation is therefore still O(𝑛2). For large 𝑛,
one should expect that solving Ax = b by a forward and backward substitution
should be substantially faster than a direct solution using Gaussian elimination.

3.5 System of nonlinear equations

A system of nonlinear equations can be solved using a version of Newton’s
Method. We illustrate this method for a system of two equations and two
unknowns. Suppose that we want to solve

𝑓(𝑥, 𝑦) = 0, 𝑔(𝑥, 𝑦) = 0,

for the unknowns 𝑥 and 𝑦. We want to construct two simultaneous sequences
𝑥0, 𝑥1, 𝑥2, . . . and 𝑦0, 𝑦1, 𝑦2, . . . that converge to the roots. To construct these
sequences, we Taylor series expand 𝑓(𝑥𝑛+1, 𝑦𝑛+1) and 𝑔(𝑥𝑛+1, 𝑦𝑛+1) about the
point (𝑥𝑛, 𝑦𝑛). Using the partial derivatives 𝑓𝑥 = 𝜕𝑓/𝜕𝑥, 𝑓𝑦 = 𝜕𝑓/𝜕𝑦, etc., the
two-dimensional Taylor series expansions, displaying only the linear terms, are
given by

𝑓(𝑥𝑛+1, 𝑦𝑛+1) = 𝑓(𝑥𝑛, 𝑦𝑛) + (𝑥𝑛+1 − 𝑥𝑛)𝑓𝑥(𝑥𝑛, 𝑦𝑛)

+ (𝑦𝑛+1 − 𝑦𝑛)𝑓𝑦(𝑥𝑛, 𝑦𝑛) + . . .

𝑔(𝑥𝑛+1, 𝑦𝑛+1) = 𝑔(𝑥𝑛, 𝑦𝑛) + (𝑥𝑛+1 − 𝑥𝑛)𝑔𝑥(𝑥𝑛, 𝑦𝑛)

+ (𝑦𝑛+1 − 𝑦𝑛)𝑔𝑦(𝑥𝑛, 𝑦𝑛) +

To obtain Newton’s method, we take 𝑓(𝑥𝑛+1, 𝑦𝑛+1) = 0, 𝑔(𝑥𝑛+1, 𝑦𝑛+1) = 0 and
drop higher-order terms above linear. Although one can then find a system of
linear equations for 𝑥𝑛+1 and 𝑦𝑛+1, it is more convenient to define the variables

Δ𝑥𝑛 = 𝑥𝑛+1 − 𝑥𝑛, Δ𝑦𝑛 = 𝑦𝑛+1 − 𝑦𝑛.

The iteration equations will then be given by

𝑥𝑛+1 = 𝑥𝑛 +Δ𝑥𝑛, 𝑦𝑛+1 = 𝑦𝑛 +Δ𝑦𝑛;

and the linear equations to be solved for Δ𝑥𝑛 and Δ𝑦𝑛 are given by(︂
𝑓𝑥 𝑓𝑦
𝑔𝑥 𝑔𝑦

)︂(︂
Δ𝑥𝑛

Δ𝑦𝑛

)︂
=

(︂
−𝑓
−𝑔

)︂
,

where 𝑓 , 𝑔, 𝑓𝑥, 𝑓𝑦, 𝑔𝑥, and 𝑔𝑦 are all evaluated at the point (𝑥𝑛, 𝑦𝑛). The two-
dimensional case is easily generalized to 𝑛 dimensions. The matrix of partial
derivatives is called the Jacobian Matrix.

We illustrate Newton’s Method by finding the steady state solution of the
Lorenz equations, given by

𝜎(𝑦 − 𝑥) = 0,

𝑟𝑥− 𝑦 − 𝑥𝑧 = 0,

𝑥𝑦 − 𝑏𝑧 = 0,

22 CHAPTER 3. SYSTEMS OF EQUATIONS

where 𝑥, 𝑦, and 𝑧 are the unknown variables and 𝜎, 𝑟, and 𝑏 are the known
parameters. Here, we have a three-dimensional homogeneous system 𝑓 = 0,
𝑔 = 0, and ℎ = 0, with

𝑓(𝑥, 𝑦, 𝑧) = 𝜎(𝑦 − 𝑥),

𝑔(𝑥, 𝑦, 𝑧) = 𝑟𝑥− 𝑦 − 𝑥𝑧,

ℎ(𝑥, 𝑦, 𝑧) = 𝑥𝑦 − 𝑏𝑧.

The partial derivatives can be computed to be

𝑓𝑥 = −𝜎, 𝑓𝑦 = 𝜎, 𝑓𝑧 = 0,

𝑔𝑥 = 𝑟 − 𝑧, 𝑔𝑦 = −1, 𝑔𝑧 = −𝑥,

ℎ𝑥 = 𝑦, ℎ𝑦 = 𝑥, ℎ𝑧 = −𝑏.

The iteration equation is therefore⎛⎝ −𝜎 𝜎 0
𝑟 − 𝑧𝑛 −1 −𝑥𝑛

𝑦𝑛 𝑥𝑛 −𝑏

⎞⎠⎛⎝Δ𝑥𝑛

Δ𝑦𝑛
Δ𝑧𝑛

⎞⎠ = −

⎛⎝ 𝜎(𝑦𝑛 − 𝑥𝑛)
𝑟𝑥𝑛 − 𝑦𝑛 − 𝑥𝑛𝑧𝑛

𝑥𝑛𝑦𝑛 − 𝑏𝑧𝑛

⎞⎠ ,

with

𝑥𝑛+1 = 𝑥𝑛 +Δ𝑥𝑛,

𝑦𝑛+1 = 𝑦𝑛 +Δ𝑦𝑛,

𝑧𝑛+1 = 𝑧𝑛 +Δ𝑧𝑛.

The MATLAB program that solves this system is contained in newton system.m.

Chapter 4

Least-squares
approximation

The method of least-squares is commonly used to fit a parameterized curve to
experimental data. In general, the fitting curve is not expected to pass through
the data points, making this problem substantially different from the one of
interpolation.

We consider here only the simplest case of the same experimental error for
all the data points. Let the data to be fitted be given by (𝑥𝑖, 𝑦𝑖), with 𝑖 = 1 to
𝑛.

4.1 Fitting a straight line

Suppose the fitting curve is a line. We write for the fitting curve

𝑦(𝑥) = 𝛼𝑥+ 𝛽.

The distance 𝑟𝑖 from the data point (𝑥𝑖, 𝑦𝑖) and the fitting curve is given by

𝑟𝑖 = 𝑦𝑖 − 𝑦(𝑥𝑖)

= 𝑦𝑖 − (𝛼𝑥𝑖 + 𝛽).

A least-squares fit minimizes the sum of the squares of the 𝑟𝑖’s. This minimum
can be shown to result in the most probable values of 𝛼 and 𝛽.

We define

𝜌 =

𝑛∑︁
𝑖=1

𝑟2𝑖

=

𝑛∑︁
𝑖=1

(︀
𝑦𝑖 − (𝛼𝑥𝑖 + 𝛽)

)︀2
.

To minimize 𝜌 with respect to 𝛼 and 𝛽, we solve

𝜕𝜌

𝜕𝛼
= 0,

𝜕𝜌

𝜕𝛽
= 0.

23

24 CHAPTER 4. LEAST-SQUARES APPROXIMATION

Taking the partial derivatives, we have

𝜕𝜌

𝜕𝛼
=

𝑛∑︁
𝑖=1

2(−𝑥𝑖)
(︀
𝑦𝑖 − (𝛼𝑥𝑖 + 𝛽)

)︀
= 0,

𝜕𝜌

𝜕𝛽
=

𝑛∑︁
𝑖=1

2(−1)
(︀
𝑦𝑖 − (𝛼𝑥𝑖 + 𝛽)

)︀
= 0.

These equations form a system of two linear equations in the two unknowns 𝛼
and 𝛽, which is evident when rewritten in the form

𝛼

𝑛∑︁
𝑖=1

𝑥2
𝑖 + 𝛽

𝑛∑︁
𝑖=1

𝑥𝑖 =

𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖,

𝛼

𝑛∑︁
𝑖=1

𝑥𝑖 + 𝛽𝑛 =

𝑛∑︁
𝑖=1

𝑦𝑖.

These equations can be solved either analytically, or numerically in MATLAB,
where the matrix form is(︂∑︀𝑛

𝑖=1 𝑥
2
𝑖

∑︀𝑛
𝑖=1 𝑥𝑖∑︀𝑛

𝑖=1 𝑥𝑖 𝑛

)︂(︂
𝛼
𝛽

)︂
=

(︂∑︀𝑛
𝑖=1 𝑥𝑖𝑦𝑖∑︀𝑛
𝑖=1 𝑦𝑖

)︂
.

A proper statistical treatment of this problem should also consider an estimate
of the errors in 𝛼 and 𝛽 as well as an estimate of the goodness-of-fit of the data
to the model. We leave these further considerations to a statistics class.

4.2 Fitting to a linear combination of functions

Consider the general fitting function

𝑦(𝑥) =

𝑚∑︁
𝑗=1

𝑐𝑗𝑓𝑗(𝑥),

where we assume 𝑚 functions 𝑓𝑗(𝑥). For example, if we want to fit a cubic
polynomial to the data, then we would have 𝑚 = 4 and take 𝑓1 = 1, 𝑓2 = 𝑥,
𝑓3 = 𝑥2 and 𝑓4 = 𝑥3. Typically, the number of functions 𝑓𝑗 is less than the
number of data points; that is, 𝑚 < 𝑛, so that a direct attempt to solve for
the 𝑐𝑗 ’s such that the fitting function exactly passes through the 𝑛 data points
would result in 𝑛 equations and𝑚 unknowns. This would be an over-determined
linear system that in general has no solution.

We now define the vectors

y =

⎛⎜⎜⎜⎝
𝑦1
𝑦2
...
𝑦𝑛

⎞⎟⎟⎟⎠ , c =

⎛⎜⎜⎜⎝
𝑐1
𝑐2
...
𝑐𝑚

⎞⎟⎟⎟⎠ ,

and the 𝑛-by-𝑚 matrix

A =

⎛⎜⎜⎜⎝
𝑓1(𝑥1) 𝑓2(𝑥1) · · · 𝑓𝑚(𝑥1)
𝑓1(𝑥2) 𝑓2(𝑥2) · · · 𝑓𝑚(𝑥2)

...
...

. . .
...

𝑓1(𝑥𝑛) 𝑓2(𝑥𝑛) · · · 𝑓𝑚(𝑥𝑛)

⎞⎟⎟⎟⎠ . (4.1)

4.2. FITTING TO A LINEAR COMBINATION OF FUNCTIONS 25

With 𝑚 < 𝑛, the equation Ac = y is over-determined. We let

r = y −Ac

be the residual vector, and let

𝜌 =

𝑛∑︁
𝑖=1

𝑟2𝑖 .

The method of least squares minimizes 𝜌 with respect to the components of c.
Now, using 𝑇 to signify the transpose of a matrix, we have

𝜌 = r𝑇 r

= (y −Ac)𝑇 (y −Ac)

= y𝑇y − c𝑇A𝑇y − y𝑇Ac+ c𝑇A𝑇Ac.

Since 𝜌 is a scalar, each term in the above expression must be a scalar, and since
the transpose of a scalar is equal to the scalar, we have

c𝑇A𝑇y =
(︀
c𝑇A𝑇y

)︀𝑇
= y𝑇Ac.

Therefore,

𝜌 = y𝑇y − 2y𝑇Ac+ c𝑇A𝑇Ac.

To find the minimum of 𝜌, we will need to solve 𝜕𝜌/𝜕𝑐𝑗 = 0 for 𝑗 = 1, . . . ,𝑚.
To take the derivative of 𝜌, we switch to a tensor notation, using the Einstein
summation convention, where repeated indices are summed over their allowable
range. We can write

𝜌 = 𝑦𝑖𝑦𝑖 − 2𝑦𝑖A𝑖𝑘𝑐𝑘 + 𝑐𝑖A
𝑇
𝑖𝑘A𝑘𝑙𝑐𝑙.

Taking the partial derivative, we have

𝜕𝜌

𝜕𝑐𝑗
= −2𝑦𝑖A𝑖𝑘

𝜕𝑐𝑘
𝜕𝑐𝑗

+
𝜕𝑐𝑖
𝜕𝑐𝑗

A𝑇
𝑖𝑘A𝑘𝑙𝑐𝑙 + 𝑐𝑖A

𝑇
𝑖𝑘A𝑘𝑙

𝜕𝑐𝑙
𝜕𝑐𝑗

.

Now,

𝜕𝑐𝑖
𝜕𝑐𝑗

=

{︃
1, if 𝑖 = 𝑗;

0, otherwise.

Therefore,
𝜕𝜌

𝜕𝑐𝑗
= −2𝑦𝑖A𝑖𝑗 +A𝑇

𝑗𝑘A𝑘𝑙𝑐𝑙 + 𝑐𝑖A
𝑇
𝑖𝑘A𝑘𝑗 .

Now,

𝑐𝑖A
𝑇
𝑖𝑘A𝑘𝑗 = 𝑐𝑖A𝑘𝑖A𝑘𝑗

= A𝑘𝑗A𝑘𝑖𝑐𝑖

= A𝑇
𝑗𝑘A𝑘𝑖𝑐𝑖

= A𝑇
𝑗𝑘A𝑘𝑙𝑐𝑙.

26 CHAPTER 4. LEAST-SQUARES APPROXIMATION

Therefore,
𝜕𝜌

𝜕𝑐𝑗
= −2𝑦𝑖A𝑖𝑗 + 2A𝑇

𝑗𝑘A𝑘𝑙𝑐𝑙.

With the partials set equal to zero, we have

A𝑇
𝑗𝑘A𝑘𝑙𝑐𝑙 = 𝑦𝑖A𝑖𝑗 ,

or
A𝑇

𝑗𝑘A𝑘𝑙𝑐𝑙 = A𝑇
𝑗𝑖𝑦𝑖,

In vector notation, we have
A𝑇Ac = A𝑇y. (4.2)

Equation (4.2) is the so-called normal equation, and can be solved for c by
Gaussian elimination using the MATLAB backslash operator. After construct-
ing the matrix A given by (4.1), and the vector y from the data, one can code
in MATLAB

𝑐 = (𝐴′𝐴)∖(𝐴′𝑦);

But in fact the MATLAB back slash operator will automatically solve the normal
equations when the matrix A is not square, so that the MATLAB code

𝑐 = 𝐴∖𝑦;

yields the same result.

Chapter 5

Interpolation

Consider the following problem: Given the values of a known function 𝑦 = 𝑓(𝑥)
at a sequence of ordered points 𝑥0, 𝑥1, . . . , 𝑥𝑛, find 𝑓(𝑥) for arbitrary 𝑥. When
𝑥0 ≤ 𝑥 ≤ 𝑥𝑛, the problem is called interpolation. When 𝑥 < 𝑥0 or 𝑥 > 𝑥𝑛 the
problem is called extrapolation.

With 𝑦𝑖 = 𝑓(𝑥𝑖), the problem of interpolation is basically one of drawing a
smooth curve through the known points (𝑥0, 𝑦0), (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛). This is
not the same problem as drawing a smooth curve that approximates a set of data
points that have experimental error. This latter problem is called least-squares
approximation.

Here, we will consider three interpolation algorithms: (1) polynomial inter-
polation; (2) piecewise linear interpolation, and; (3) cubic spline interpolation.

5.1 Polynomial interpolation

The 𝑛+ 1 points (𝑥0, 𝑦0), (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) can be interpolated by a unique
polynomial of degree 𝑛. When 𝑛 = 1, the polynomial is a linear function;
when 𝑛 = 2, the polynomial is a quadratic function. There are three standard
algorithms that can be used to construct this unique interpolating polynomial,
and we will present all three here, not so much because they are all useful, but
because it is interesting to learn how these three algorithms are constructed.

When discussing each algorithm, we define 𝑃𝑛(𝑥) to be the unique 𝑛th degree
polynomial that passes through the given 𝑛+ 1 data points.

5.1.1 Vandermonde polynomial

This Vandermonde polynomial is the most straightforward construction of the
interpolating polynomial 𝑃𝑛(𝑥). We simply write

𝑃𝑛(𝑥) = 𝑐0𝑥
𝑛 + 𝑐1𝑥

𝑛−1 + · · ·+ 𝑐𝑛.

27

28 CHAPTER 5. INTERPOLATION

Then we can immediately form 𝑛 + 1 linear equations for the 𝑛 + 1 unknown
coefficients 𝑐0, 𝑐1, . . . , 𝑐𝑛 using the 𝑛+ 1 known points:

𝑦0 = 𝑐0𝑥
𝑛
0 + 𝑐1𝑥

𝑛−1
0 + · · ·+ 𝑐𝑛−1𝑥0 + 𝑐𝑛

𝑦2 = 𝑐0𝑥
𝑛
1 + 𝑐1𝑥

𝑛−1
1 + · · ·+ 𝑐𝑛−1𝑥1 + 𝑐𝑛

...
...

...

𝑦𝑛 = 𝑐0𝑥
𝑛
𝑛 + 𝑐1𝑥

𝑛−1
𝑛 + · · ·+ 𝑐𝑛−1𝑥𝑛 + 𝑐𝑛.

The system of equations in matrix form is⎛⎜⎜⎜⎝
𝑥𝑛
0 𝑥𝑛−1

0 · · · 𝑥0 1
𝑥𝑛
1 𝑥𝑛−1

1 · · · 𝑥1 1
...

...
. . .

...
𝑥𝑛
𝑛 𝑥𝑛−1

𝑛 · · · 𝑥𝑛 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
𝑐0
𝑐1
...
𝑐𝑛

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝑦0
𝑦1
...
𝑦𝑛

⎞⎟⎟⎟⎠ .

The matrix is called the Vandermonde matrix, and can be constructed using
the MATLAB function vander.m. The system of linear equations can be solved
in MATLAB using the ∖ operator, and the MATLAB function polyval.m can
used to interpolate using the 𝑐 coefficients. I will illustrate this in class and
place the code on the website.

5.1.2 Lagrange polynomial

The Lagrange polynomial is the most clever construction of the interpolating
polynomial 𝑃𝑛(𝑥), and leads directly to an analytical formula. The Lagrange
polynomial is the sum of 𝑛 + 1 terms and each term is itself a polynomial of
degree 𝑛. The full polynomial is therefore of degree 𝑛. Counting from 0, the 𝑖th
term of the Lagrange polynomial is constructed by requiring it to be zero at 𝑥𝑗

with 𝑗 ̸= 𝑖, and equal to 𝑦𝑖 when 𝑗 = 𝑖. The polynomial can be written as

𝑃𝑛(𝑥) =
(𝑥− 𝑥1)(𝑥− 𝑥2) · · · (𝑥− 𝑥𝑛)𝑦0
(𝑥0 − 𝑥1)(𝑥0 − 𝑥2) · · · (𝑥0 − 𝑥𝑛)

+
(𝑥− 𝑥0)(𝑥− 𝑥2) · · · (𝑥− 𝑥𝑛)𝑦1
(𝑥1 − 𝑥0)(𝑥1 − 𝑥2) · · · (𝑥1 − 𝑥𝑛)

+ · · ·+ (𝑥− 𝑥0)(𝑥− 𝑥1) · · · (𝑥− 𝑥𝑛−1)𝑦𝑛
(𝑥𝑛 − 𝑥0)(𝑥𝑛 − 𝑥1) · · · (𝑥𝑛 − 𝑥𝑛−1)

.

It can be clearly seen that the first term is equal to zero when 𝑥 = 𝑥1, 𝑥2, . . . , 𝑥𝑛

and equal to 𝑦0 when 𝑥 = 𝑥0; the second term is equal to zero when 𝑥 =
𝑥0, 𝑥2, . . . 𝑥𝑛 and equal to 𝑦1 when 𝑥 = 𝑥1; and the last term is equal to zero
when 𝑥 = 𝑥0, 𝑥1, . . . 𝑥𝑛−1 and equal to 𝑦𝑛 when 𝑥 = 𝑥𝑛. The uniqueness of
the interpolating polynomial implies that the Lagrange polynomial must be the
interpolating polynomial.

5.1.3 Newton polynomial

The Newton polynomial is somewhat more clever than the Vandermonde poly-
nomial because it results in a system of linear equations that is lower triangular,
and therefore can be solved by forward substitution. The interpolating polyno-
mial is written in the form

𝑃𝑛(𝑥) = 𝑐0 + 𝑐1(𝑥− 𝑥0) + 𝑐2(𝑥− 𝑥0)(𝑥− 𝑥1) + · · ·+ 𝑐𝑛(𝑥− 𝑥0) · · · (𝑥− 𝑥𝑛−1),

5.2. PIECEWISE LINEAR INTERPOLATION 29

which is clearly a polynomial of degree 𝑛. The 𝑛+1 unknown coefficients given
by the 𝑐’s can be found by substituting the points (𝑥𝑖, 𝑦𝑖) for 𝑖 = 0, . . . , 𝑛:

𝑦0 = 𝑐0,

𝑦1 = 𝑐0 + 𝑐1(𝑥1 − 𝑥0),

𝑦2 = 𝑐0 + 𝑐1(𝑥2 − 𝑥0) + 𝑐2(𝑥2 − 𝑥0)(𝑥2 − 𝑥1),

...
...

...

𝑦𝑛 = 𝑐0 + 𝑐1(𝑥𝑛 − 𝑥0) + 𝑐2(𝑥𝑛 − 𝑥0)(𝑥𝑛 − 𝑥1) + · · ·+ 𝑐𝑛(𝑥𝑛 − 𝑥0) · · · (𝑥𝑛 − 𝑥𝑛−1).

This system of linear equations is lower triangular as can be seen from the
matrix form⎛⎜⎜⎜⎝

1 0 0 · · · 0
1 (𝑥1 − 𝑥0) 0 · · · 0
...

...
...

. . .
...

1 (𝑥𝑛 − 𝑥0) (𝑥𝑛 − 𝑥0)(𝑥𝑛 − 𝑥1) · · · (𝑥𝑛 − 𝑥0) · · · (𝑥𝑛 − 𝑥𝑛−1)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
𝑐0
𝑐1
...
𝑐𝑛

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
𝑦0
𝑦1
...
𝑦𝑛

⎞⎟⎟⎟⎠ ,

and so theoretically can be solved faster than the Vandermonde polynomial. In
practice, however, there is little difference because polynomial interpolation is
only useful when the number of points to be interpolated is small.

5.2 Piecewise linear interpolation

Instead of constructing a single global polynomial that goes through all the
points, one can construct local polynomials that are then connected together.
In the the section following this one, we will discuss how this may be done using
cubic polynomials. Here, we discuss the simpler case of linear polynomials. This
is the default interpolation typically used when plotting data.

Suppose the interpolating function is 𝑦 = 𝑔(𝑥), and as previously, there are
𝑛+1 points to interpolate. We construct the function 𝑔(𝑥) out of 𝑛 local linear
polynomials. We write

𝑔(𝑥) = 𝑔𝑖(𝑥), for 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1,

where

𝑔𝑖(𝑥) = 𝑎𝑖(𝑥− 𝑥𝑖) + 𝑏𝑖,

and 𝑖 = 0, 1, . . . , 𝑛− 1.
We now require 𝑦 = 𝑔𝑖(𝑥) to pass through the endpoints (𝑥𝑖, 𝑦𝑖) and (𝑥𝑖+1, 𝑦𝑖+1).

We have

𝑦𝑖 = 𝑏𝑖,

𝑦𝑖+1 = 𝑎𝑖(𝑥𝑖+1 − 𝑥𝑖) + 𝑏𝑖.

30 CHAPTER 5. INTERPOLATION

Therefore, the coefficients of 𝑔𝑖(𝑥) are determined to be

𝑎𝑖 =
𝑦𝑖+1 − 𝑦𝑖
𝑥𝑖+1 − 𝑥𝑖

, 𝑏𝑖 = 𝑦𝑖.

Although piecewise linear interpolation is widely used, particularly in plotting
routines, it suffers from a discontinuity in the derivative at each point. This
results in a function which may not look smooth if the points are too widely
spaced. We next consider a more challenging algorithm that uses cubic polyno-
mials.

5.3 Cubic spline interpolation

The 𝑛+ 1 points to be interpolated are again

(𝑥0, 𝑦0), (𝑥1, 𝑦1), . . . (𝑥𝑛, 𝑦𝑛).

Here, we use 𝑛 piecewise cubic polynomials for interpolation,

𝑔𝑖(𝑥) = 𝑎𝑖(𝑥− 𝑥𝑖)
3 + 𝑏𝑖(𝑥− 𝑥𝑖)

2 + 𝑐𝑖(𝑥− 𝑥𝑖) + 𝑑𝑖, 𝑖 = 0, 1, . . . , 𝑛− 1,

with the global interpolation function written as

𝑔(𝑥) = 𝑔𝑖(𝑥), for 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1.

To achieve a smooth interpolation we impose that 𝑔(𝑥) and its first and
second derivatives are continuous. The requirement that 𝑔(𝑥) is continuous
(and goes through all 𝑛+ 1 points) results in the two constraints

𝑔𝑖(𝑥𝑖) = 𝑦𝑖, 𝑖 = 0 to 𝑛− 1, (5.1)

𝑔𝑖(𝑥𝑖+1) = 𝑦𝑖+1, 𝑖 = 0 to 𝑛− 1. (5.2)

The requirement that 𝑔′(𝑥) is continuous results in

𝑔′𝑖(𝑥𝑖+1) = 𝑔′𝑖+1(𝑥𝑖+1), 𝑖 = 0 to 𝑛− 2. (5.3)

And the requirement that 𝑔′′(𝑥) is continuous results in

𝑔′′𝑖 (𝑥𝑖+1) = 𝑔′′𝑖+1(𝑥𝑖+1), 𝑖 = 0 to 𝑛− 2. (5.4)

There are 𝑛 cubic polynomials 𝑔𝑖(𝑥) and each cubic polynomial has four free
coefficients; there are therefore a total of 4𝑛 unknown coefficients. The number
of constraining equations from (5.1)-(5.4) is 2𝑛+2(𝑛−1) = 4𝑛−2. With 4𝑛−2
constraints and 4𝑛 unknowns, two more conditions are required for a unique
solution. These are usually chosen to be extra conditions on the first 𝑔0(𝑥) and
last 𝑔𝑛−1(𝑥) polynomials. We will discuss these extra conditions later.

We now proceed to determine equations for the unknown coefficients of the
cubic polynomials. The polynomials and their first two derivatives are given by

𝑔𝑖(𝑥) = 𝑎𝑖(𝑥− 𝑥𝑖)
3 + 𝑏𝑖(𝑥− 𝑥𝑖)

2 + 𝑐𝑖(𝑥− 𝑥𝑖) + 𝑑𝑖, (5.5)

𝑔′𝑖(𝑥) = 3𝑎𝑖(𝑥− 𝑥𝑖)
2 + 2𝑏𝑖(𝑥− 𝑥𝑖) + 𝑐𝑖, (5.6)

𝑔′′𝑖 (𝑥) = 6𝑎𝑖(𝑥− 𝑥𝑖) + 2𝑏𝑖. (5.7)

5.3. CUBIC SPLINE INTERPOLATION 31

We will consider the four conditions (5.1)-(5.4) in turn. From (5.1) and (5.5),
we have

𝑑𝑖 = 𝑦𝑖, 𝑖 = 0 to 𝑛− 1, (5.8)

which directly solves for all of the 𝑑-coefficients.
To satisfy (5.2), we first define

ℎ𝑖 = 𝑥𝑖+1 − 𝑥𝑖,

and
𝑓𝑖 = 𝑦𝑖+1 − 𝑦𝑖.

Now, from (5.2) and (5.5), using (5.8), we obtain the 𝑛 equations

𝑎𝑖ℎ
3
𝑖 + 𝑏𝑖ℎ

2
𝑖 + 𝑐𝑖ℎ𝑖 = 𝑓𝑖, 𝑖 = 0 to 𝑛− 1. (5.9)

From (5.3) and (5.6) we obtain the 𝑛− 1 equations

3𝑎𝑖ℎ
2
𝑖 + 2𝑏𝑖ℎ𝑖 + 𝑐𝑖 = 𝑐𝑖+1, 𝑖 = 0 to 𝑛− 2. (5.10)

From (5.4) and (5.7) we obtain the 𝑛− 1 equations

3𝑎𝑖ℎ𝑖 + 𝑏𝑖 = 𝑏𝑖+1 𝑖 = 0 to 𝑛− 2. (5.11)

It is will be useful to include a definition of the coefficient 𝑏𝑛, which is now
missing. (The index of the cubic polynomial coefficients only go up to 𝑛 − 1.)
We simply extend (5.11) up to 𝑖 = 𝑛− 1 and so write

3𝑎𝑛−1ℎ𝑛−1 + 𝑏𝑛−1 = 𝑏𝑛, (5.12)

which can be viewed as a definition of 𝑏𝑛.
We now proceed to eliminate the sets of 𝑎- and 𝑐-coefficients (with the 𝑑-

coefficients already eliminated in (5.8)) to find a system of linear equations for
the 𝑏-coefficients. From (5.11) and (5.12), we can solve for the 𝑛 𝑎-coefficients
to find

𝑎𝑖 =
1

3ℎ𝑖
(𝑏𝑖+1 − 𝑏𝑖) , 𝑖 = 0 to 𝑛− 1. (5.13)

From (5.9), we can solve for the 𝑛 𝑐-coefficients as follows:

𝑐𝑖 =
1

ℎ𝑖

(︀
𝑓𝑖 − 𝑎𝑖ℎ

3
𝑖 − 𝑏𝑖ℎ

2
𝑖

)︀
=

1

ℎ𝑖

(︂
𝑓𝑖 −

1

3ℎ𝑖
(𝑏𝑖+1 − 𝑏𝑖)ℎ

3
𝑖 − 𝑏𝑖ℎ

2
𝑖

)︂
=

𝑓𝑖
ℎ𝑖

− 1

3
ℎ𝑖 (𝑏𝑖+1 + 2𝑏𝑖) , 𝑖 = 0 to 𝑛− 1. (5.14)

We can now find an equation for the 𝑏-coefficients by substituting (5.8),
(5.13) and (5.14) into (5.10):

3

(︂
1

3ℎ𝑖
(𝑏𝑖+1 − 𝑏𝑖)

)︂
ℎ2
𝑖 + 2𝑏𝑖ℎ𝑖 +

(︂
𝑓𝑖
ℎ𝑖

− 1

3
ℎ𝑖(𝑏𝑖+1 + 2𝑏𝑖)

)︂
=

(︂
𝑓𝑖+1

ℎ𝑖+1
− 1

3
ℎ𝑖+1(𝑏𝑖+2 + 2𝑏𝑖+1)

)︂
,

32 CHAPTER 5. INTERPOLATION

which simplifies to

1

3
ℎ𝑖𝑏𝑖 +

2

3
(ℎ𝑖 + ℎ𝑖+1)𝑏𝑖+1 +

1

3
ℎ𝑖+1𝑏𝑖+2 =

𝑓𝑖+1

ℎ𝑖+1
− 𝑓𝑖

ℎ𝑖
, (5.15)

an equation that is valid for 𝑖 = 0 to 𝑛 − 2. Therefore, (5.15) represent 𝑛 − 1
equations for the 𝑛+1 unknown 𝑏-coefficients. Accordingly, we write the matrix
equation for the 𝑏-coefficients, leaving the first and last row absent, as⎛⎜⎜⎜⎜⎜⎝

. missing
1
3ℎ0

2
3 (ℎ0 + ℎ1)

1
3ℎ1 . . . 0 0 0

...
...

...
. . .

...
...

...
0 0 0 . . . 1

3ℎ𝑛−2
2
3 (ℎ𝑛−2 + ℎ𝑛−1)

1
3ℎ𝑛−1

. missing

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
𝑏0
𝑏1
...

𝑏𝑛−1

𝑏𝑛

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝
missing
𝑓1
ℎ1

− 𝑓0
ℎ0

...
𝑓𝑛−1

ℎ𝑛−1
− 𝑓𝑛−2

ℎ𝑛−2

missing

⎞⎟⎟⎟⎟⎟⎟⎠ .

Once the missing first and last equations are specified, the matrix equation
for the 𝑏-coefficients can be solved by Gaussian elimination. And once the 𝑏-
coefficients are determined, the 𝑎- and 𝑐-coefficients can also be determined from
(5.13) and (5.14), with the 𝑑-coefficients already known from (5.8). The piece-
wise cubic polynomials, then, are known and 𝑔(𝑥) can be used for interpolation
to any value 𝑥 satisfying 𝑥0 ≤ 𝑥 ≤ 𝑥𝑛.

The missing first and last equations can be specified in several ways, and
here we show the two ways that are allowed by the MATLAB function spline.m.
The first way should be used when the derivative 𝑔′(𝑥) is known at the endpoints
𝑥0 and 𝑥𝑛; that is, suppose we know the values of 𝛼 and 𝛽 such that

𝑔′0(𝑥0) = 𝛼, 𝑔′𝑛−1(𝑥𝑛) = 𝛽.

From the known value of 𝛼, and using (5.6) and (5.14), we have

𝛼 = 𝑐0

=
𝑓0
ℎ0

− 1

3
ℎ0(𝑏1 + 2𝑏0).

Therefore, the missing first equation is determined to be

2

3
ℎ0𝑏0 +

1

3
ℎ0𝑏1 =

𝑓0
ℎ0

− 𝛼. (5.16)

From the known value of 𝛽, and using (5.6), (5.13), and (5.14), we have

𝛽 = 3𝑎𝑛−1ℎ
2
𝑛−1 + 2𝑏𝑛−1ℎ𝑛−1 + 𝑐𝑛−1

= 3

(︂
1

3ℎ𝑛−1
(𝑏𝑛 − 𝑏𝑛−1)

)︂
ℎ2
𝑛−1 + 2𝑏𝑛−1ℎ𝑛−1 +

(︂
𝑓𝑛−1

ℎ𝑛−1
− 1

3
ℎ𝑛−1(𝑏𝑛 + 2𝑏𝑛−1)

)︂
,

5.4. MULTIDIMENSIONAL INTERPOLATION 33

which simplifies to

1

3
ℎ𝑛−1𝑏𝑛−1 +

2

3
ℎ𝑛−1𝑏𝑛 = 𝛽 − 𝑓𝑛−1

ℎ𝑛−1
, (5.17)

to be used as the missing last equation.
The second way of specifying the missing first and last equations is called

the not-a-knot condition, which assumes that

𝑔0(𝑥) = 𝑔1(𝑥), 𝑔𝑛−2(𝑥) = 𝑔𝑛−1(𝑥).

Considering the first of these equations, from (5.5) we have

𝑎0(𝑥− 𝑥0)
3 + 𝑏0(𝑥− 𝑥0)

2 + 𝑐0(𝑥− 𝑥0) + 𝑑0

= 𝑎1(𝑥− 𝑥1)
3 + 𝑏1(𝑥− 𝑥1)

2 + 𝑐1(𝑥− 𝑥1) + 𝑑1.

Now two cubic polynomials can be proven to be identical if at some value of 𝑥,
the polynomials and their first three derivatives are identical. Our conditions of
continuity at 𝑥 = 𝑥1 already require that at this value of 𝑥 these two polynomials
and their first two derivatives are identical. The polynomials themselves will be
identical, then, if their third derivatives are also identical at 𝑥 = 𝑥1, or if

𝑎0 = 𝑎1.

From (5.13), we have

1

3ℎ0
(𝑏1 − 𝑏0) =

1

3ℎ1
(𝑏2 − 𝑏1),

or after simplification

ℎ1𝑏0 − (ℎ0 + ℎ1)𝑏1 + ℎ0𝑏2 = 0, (5.18)

which provides us our missing first equation. A similar argument at 𝑥 = 𝑥𝑛 − 1
also provides us with our last equation,

ℎ𝑛−1𝑏𝑛−2 − (ℎ𝑛−2 + ℎ𝑛−1)𝑏𝑛−1 + ℎ𝑛−2𝑏𝑛 = 0. (5.19)

The MATLAB subroutines spline.m and ppval.m can be used for cubic spline
interpolation (see also interp1.m). I will illustrate these routines in class and
post sample code on the course web site.

5.4 Multidimensional interpolation

Suppose we are interpolating the value of a function of two variables,

𝑧 = 𝑓(𝑥, 𝑦).

The known values are given by

𝑧𝑖𝑗 = 𝑓(𝑥𝑖, 𝑦𝑗),

with 𝑖 = 0, 1, . . . , 𝑛 and 𝑗 = 0, 1, . . . , 𝑛. Note that the (𝑥, 𝑦) points at which
𝑓(𝑥, 𝑦) are known lie on a grid in the 𝑥− 𝑦 plane.

34 CHAPTER 5. INTERPOLATION

Let 𝑧 = 𝑔(𝑥, 𝑦) be the interpolating function, satisfying 𝑧𝑖𝑗 = 𝑔(𝑥𝑖, 𝑦𝑗). A
two-dimensional interpolation to find the value of 𝑔 at the point (𝑥, 𝑦) may be
done by first performing 𝑛 + 1 one-dimensional interpolations in 𝑦 to find the
value of 𝑔 at the 𝑛 + 1 points (𝑥0, 𝑦), (𝑥1, 𝑦), . . . , (𝑥𝑛, 𝑦), followed by a single
one-dimensional interpolation in 𝑥 to find the value of 𝑔 at (𝑥, 𝑦).

In other words, two-dimensional interpolation on a grid of dimension (𝑛 +
1) × (𝑛 + 1) is done by first performing 𝑛 + 1 one-dimensional interpolations
to the value 𝑦 followed by a single one-dimensional interpolation to the value
𝑥. Two-dimensional interpolation can be generalized to higher dimensions. The
MATLAB functions to perform two- and three-dimensional interpolation are
interp2.m and interp3.m.

Chapter 6

Integration

We want to construct numerical algorithms that can perform definite integrals
of the form

𝐼 =

∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥. (6.1)

Calculating these definite integrals numerically is called numerical integration,
numerical quadrature, or more simply quadrature.

6.1 Elementary formulas

We first consider integration from 0 to ℎ, with ℎ small, to serve as the building
blocks for integration over larger domains. We here define 𝐼ℎ as the following
integral:

𝐼ℎ =

∫︁ ℎ

0

𝑓(𝑥)𝑑𝑥. (6.2)

To perform this integral, we consider a Taylor series expansion of 𝑓(𝑥) about
the value 𝑥 = ℎ/2:

𝑓(𝑥) = 𝑓(ℎ/2) + (𝑥− ℎ/2)𝑓 ′(ℎ/2) +
(𝑥− ℎ/2)2

2
𝑓 ′′(ℎ/2)

+
(𝑥− ℎ/2)3

6
𝑓 ′′′(ℎ/2) +

(𝑥− ℎ/2)4

24
𝑓 ′′′′(ℎ/2) + . . .

6.1.1 Midpoint rule

The midpoint rule makes use of only the first term in the Taylor series expansion.
Here, we will determine the error in this approximation. Integrating,

𝐼ℎ = ℎ𝑓(ℎ/2) +

∫︁ ℎ

0

(︂
(𝑥− ℎ/2)𝑓 ′(ℎ/2) +

(𝑥− ℎ/2)2

2
𝑓 ′′(ℎ/2)

+
(𝑥− ℎ/2)3

6
𝑓 ′′′(ℎ/2) +

(𝑥− ℎ/2)4

24
𝑓 ′′′′(ℎ/2) + . . .

)︂
𝑑𝑥.

35

36 CHAPTER 6. INTEGRATION

Changing variables by letting 𝑦 = 𝑥 − ℎ/2 and 𝑑𝑦 = 𝑑𝑥, and simplifying the
integral depending on whether the integrand is even or odd, we have

𝐼ℎ = ℎ𝑓(ℎ/2)

+

∫︁ ℎ/2

−ℎ/2

(︂
𝑦𝑓 ′(ℎ/2) +

𝑦2

2
𝑓 ′′(ℎ/2) +

𝑦3

6
𝑓 ′′′(ℎ/2) +

𝑦4

24
𝑓 ′′′′(ℎ/2) + . . .

)︂
𝑑𝑦

= ℎ𝑓(ℎ/2) +

∫︁ ℎ/2

0

(︂
𝑦2𝑓 ′′(ℎ/2) +

𝑦4

12
𝑓 ′′′′(ℎ/2) + . . .

)︂
𝑑𝑦.

The integrals that we need here are

∫︁ ℎ
2

0

𝑦2𝑑𝑦 =
ℎ3

24
,

∫︁ ℎ
2

0

𝑦4𝑑𝑦 =
ℎ5

160
.

Therefore,

𝐼ℎ = ℎ𝑓(ℎ/2) +
ℎ3

24
𝑓 ′′(ℎ/2) +

ℎ5

1920
𝑓 ′′′′(ℎ/2) + (6.3)

6.1.2 Trapezoidal rule

From the Taylor series expansion of 𝑓(𝑥) about 𝑥 = ℎ/2, we have

𝑓(0) = 𝑓(ℎ/2)− ℎ

2
𝑓 ′(ℎ/2) +

ℎ2

8
𝑓 ′′(ℎ/2)− ℎ3

48
𝑓 ′′′(ℎ/2) +

ℎ4

384
𝑓 ′′′′(ℎ/2) + . . . ,

and

𝑓(ℎ) = 𝑓(ℎ/2) +
ℎ

2
𝑓 ′(ℎ/2) +

ℎ2

8
𝑓 ′′(ℎ/2) +

ℎ3

48
𝑓 ′′′(ℎ/2) +

ℎ4

384
𝑓 ′′′′(ℎ/2) +

Adding and multiplying by ℎ/2 we obtain

ℎ

2

(︀
𝑓(0) + 𝑓(ℎ)

)︀
= ℎ𝑓(ℎ/2) +

ℎ3

8
𝑓 ′′(ℎ/2) +

ℎ5

384
𝑓 ′′′′(ℎ/2) +

We now substitute for the first term on the right-hand-side using the midpoint
rule formula:

ℎ

2

(︀
𝑓(0) + 𝑓(ℎ)

)︀
=

(︂
𝐼ℎ − ℎ3

24
𝑓 ′′(ℎ/2)− ℎ5

1920
𝑓 ′′′′(ℎ/2)

)︂
+

ℎ3

8
𝑓 ′′(ℎ/2) +

ℎ5

384
𝑓 ′′′′(ℎ/2) + . . . ,

and solving for 𝐼ℎ, we find

𝐼ℎ =
ℎ

2

(︀
𝑓(0) + 𝑓(ℎ)

)︀
− ℎ3

12
𝑓 ′′(ℎ/2)− ℎ5

480
𝑓 ′′′′(ℎ/2) + (6.4)

6.2. COMPOSITE RULES 37

6.1.3 Simpson’s rule

To obtain Simpson’s rule, we combine the midpoint and trapezoidal rule to
eliminate the error term proportional to ℎ3. Multiplying (6.3) by two and
adding to (6.4), we obtain

3𝐼ℎ = ℎ

(︂
2𝑓(ℎ/2) +

1

2
(𝑓(0) + 𝑓(ℎ))

)︂
+ ℎ5

(︂
2

1920
− 1

480

)︂
𝑓 ′′′′(ℎ/2) + . . . ,

or

𝐼ℎ =
ℎ

6

(︀
𝑓(0) + 4𝑓(ℎ/2) + 𝑓(ℎ)

)︀
− ℎ5

2880
𝑓 ′′′′(ℎ/2) +

Usually, Simpson’s rule is written by considering the three consecutive points
0, ℎ and 2ℎ. Substituting ℎ → 2ℎ, we obtain the standard result

𝐼2ℎ =
ℎ

3

(︀
𝑓(0) + 4𝑓(ℎ) + 𝑓(2ℎ)

)︀
− ℎ5

90
𝑓 ′′′′(ℎ) + (6.5)

6.2 Composite rules

We now use our elementary formulas obtained for (6.2) to perform the integral
given by (6.1).

6.2.1 Trapezoidal rule

We suppose that the function 𝑓(𝑥) is known at the 𝑛 + 1 points labeled as
𝑥0, 𝑥1, . . . , 𝑥𝑛, with the endpoints given by 𝑥0 = 𝑎 and 𝑥𝑛 = 𝑏. Define

𝑓𝑖 = 𝑓(𝑥𝑖), ℎ𝑖 = 𝑥𝑖+1 − 𝑥𝑖.

Then the integral of (6.1) may be decomposed as

∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥 =

𝑛−1∑︁
𝑖=0

∫︁ 𝑥𝑖+1

𝑥𝑖

𝑓(𝑥)𝑑𝑥

=

𝑛−1∑︁
𝑖=0

∫︁ ℎ𝑖

0

𝑓(𝑥𝑖 + 𝑠)𝑑𝑠,

where the last equality arises from the change-of-variables 𝑠 = 𝑥−𝑥𝑖. Applying
the trapezoidal rule to the integral, we have∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥 =

𝑛−1∑︁
𝑖=0

ℎ𝑖

2
(𝑓𝑖 + 𝑓𝑖+1) . (6.6)

If the points are not evenly spaced, say because the data are experimental values,
then the ℎ𝑖 may differ for each value of 𝑖 and (6.6) is to be used directly.

However, if the points are evenly spaced, say because 𝑓(𝑥) can be computed,
we have ℎ𝑖 = ℎ, independent of 𝑖. We can then define

𝑥𝑖 = 𝑎+ 𝑖ℎ, 𝑖 = 0, 1, . . . , 𝑛;

38 CHAPTER 6. INTEGRATION

and since the end point 𝑏 satisfies 𝑏 = 𝑎+ 𝑛ℎ, we have

ℎ =
𝑏− 𝑎

𝑛
.

The composite trapezoidal rule for evenly space points then becomes∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥 =
ℎ

2

𝑛−1∑︁
𝑖=0

(𝑓𝑖 + 𝑓𝑖+1)

=
ℎ

2
(𝑓0 + 2𝑓1 + · · ·+ 2𝑓𝑛−1 + 𝑓𝑛) . (6.7)

The first and last terms have a multiple of one; all other terms have a multiple
of two; and the entire sum is multiplied by ℎ/2.

6.2.2 Simpson’s rule

We here consider the composite Simpson’s rule for evenly space points. We
apply Simpson’s rule over intervals of 2ℎ, starting from 𝑎 and ending at 𝑏:

∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥 =
ℎ

3
(𝑓0 + 4𝑓1 + 𝑓2) +

ℎ

3
(𝑓2 + 4𝑓3 + 𝑓4) + . . .

+
ℎ

3
(𝑓𝑛−2 + 4𝑓𝑛−1 + 𝑓𝑛) .

Note that 𝑛 must be even for this scheme to work. Combining terms, we have∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥 =
ℎ

3
(𝑓0 + 4𝑓1 + 2𝑓2 + 4𝑓3 + 2𝑓4 + · · ·+ 4𝑓𝑛−1 + 𝑓𝑛) .

The first and last terms have a multiple of one; the even indexed terms have a
multiple of 2; the odd indexed terms have a multiple of 4; and the entire sum is
multiplied by ℎ/3.

6.3 Local versus global error

Consider the elementary formula (6.4) for the trapezoidal rule, written in the
form ∫︁ ℎ

0

𝑓(𝑥)𝑑𝑥 =
ℎ

2

(︀
𝑓(0) + 𝑓(ℎ)

)︀
− ℎ3

12
𝑓 ′′(𝜉),

where 𝜉 is some value satisfying 0 ≤ 𝜉 ≤ ℎ, and we have used Taylor’s theorem
with the mean-value form of the remainder. We can also represent the remainder
as

−ℎ3

12
𝑓 ′′(𝜉) = O(ℎ3),

where O(ℎ3) signifies that when ℎ is small, halving of the grid spacing ℎ de-
creases the error in the elementary trapezoidal rule by a factor of eight. We call
the terms represented by O(ℎ3) the Local Error.

6.4. ADAPTIVE INTEGRATION 39

𝑎 𝑑 𝑐 𝑒 𝑏

Figure 6.1: Adaptive Simpson quadrature: Level 1.

More important is the Global Error which is obtained from the composite
formula (6.7) for the trapezoidal rule. Putting in the remainder terms, we have

∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥 =
ℎ

2
(𝑓0 + 2𝑓1 + · · ·+ 2𝑓𝑛−1 + 𝑓𝑛)−

ℎ3

12

𝑛−1∑︁
𝑖=0

𝑓 ′′(𝜉𝑖),

where 𝜉𝑖 are values satisfying 𝑥𝑖 ≤ 𝜉𝑖 ≤ 𝑥𝑖+1. The remainder can be rewritten
as

−ℎ3

12

𝑛−1∑︁
𝑖=0

𝑓 ′′(𝜉𝑖) = −𝑛ℎ3

12

⟨︀
𝑓 ′′(𝜉𝑖)

⟩︀
,

where
⟨︀
𝑓 ′′(𝜉𝑖)

⟩︀
is the average value of all the 𝑓 ′′(𝜉𝑖)’s. Now,

𝑛 =
𝑏− 𝑎

ℎ
,

so that the error term becomes

−𝑛ℎ3

12

⟨︀
𝑓 ′′(𝜉𝑖)

⟩︀
= − (𝑏− 𝑎)ℎ2

12

⟨︀
𝑓 ′′(𝜉𝑖)

⟩︀
= O(ℎ2).

Therefore, the global error is O(ℎ2). That is, a halving of the grid spacing only
decreases the global error by a factor of four.

Similarly, Simpson’s rule has a local error of O(ℎ5) and a global error of
O(ℎ4).

6.4 Adaptive integration

The useful MATLAB function quad.m performs numerical integration using
adaptive Simpson quadrature. The idea is to let the computation itself decide
on the grid size required to achieve a certain level of accuracy. Moreover, the
grid size need not be the same over the entire region of integration.

We begin the adaptive integration at what is called Level 1. The uniformly
spaced points at which the function 𝑓(𝑥) is to be evaluated are shown in Fig.
6.1. The distance between the points 𝑎 and 𝑏 is taken to be 2ℎ, so that

ℎ =
𝑏− 𝑎

2
.

40 CHAPTER 6. INTEGRATION

Integration using Simpson’s rule (6.5) with grid size ℎ yields

𝐼 =
ℎ

3

(︀
𝑓(𝑎) + 4𝑓(𝑐) + 𝑓(𝑏)

)︀
− ℎ5

90
𝑓 ′′′′(𝜉),

where 𝜉 is some value satisfying 𝑎 ≤ 𝜉 ≤ 𝑏.
Integration using Simpson’s rule twice with grid size ℎ/2 yields

𝐼 =
ℎ

6

(︀
𝑓(𝑎) + 4𝑓(𝑑) + 2𝑓(𝑐) + 4𝑓(𝑒) + 𝑓(𝑏)

)︀
− (ℎ/2)5

90
𝑓 ′′′′(𝜉𝑙)−

(ℎ/2)5

90
𝑓 ′′′′(𝜉𝑟),

with 𝜉𝑙 and 𝜉𝑟 some values satisfying 𝑎 ≤ 𝜉𝑙 ≤ 𝑐 and 𝑐 ≤ 𝜉𝑟 ≤ 𝑏.
We now define

𝑆1 =
ℎ

3

(︀
𝑓(𝑎) + 4𝑓(𝑐) + 𝑓(𝑏)

)︀
,

𝑆2 =
ℎ

6

(︀
𝑓(𝑎) + 4𝑓(𝑑) + 2𝑓(𝑐) + 4𝑓(𝑒) + 𝑓(𝑏)

)︀
,

𝐸1 = −ℎ5

90
𝑓 ′′′′(𝜉),

𝐸2 = − ℎ5

25 · 90
(︀
𝑓 ′′′′(𝜉𝑙) + 𝑓 ′′′′(𝜉𝑟)

)︀
.

Now we ask whether 𝑆2 is accurate enough, or must we further refine the cal-
culation and go to Level 2? To answer this question, we make the simplifying
approximation that all of the fourth-order derivatives of 𝑓(𝑥) in the error terms
are equal; that is,

𝑓 ′′′′(𝜉) = 𝑓 ′′′′(𝜉𝑙) = 𝑓 ′′′′(𝜉𝑟) = 𝐶.

Then

𝐸1 = −ℎ5

90
𝐶,

𝐸2 = − ℎ5

24 · 90
𝐶 =

1

16
𝐸1.

Then since
𝑆1 + 𝐸1 = 𝑆2 + 𝐸2,

and
𝐸1 = 16𝐸2,

we have for our estimate for the error term 𝐸2,

𝐸2 =
1

15
(𝑆2 − 𝑆1).

Therefore, given some specific value of the tolerance tol, if⃒⃒⃒⃒
1

15
(𝑆2 − 𝑆1)

⃒⃒⃒⃒
< tol,

then we can accept 𝑆2 as 𝐼. If the tolerance is not achieved for 𝐼, then we
proceed to Level 2.

The computation at Level 2 further divides the integration interval from 𝑎
to 𝑏 into the two integration intervals 𝑎 to 𝑐 and 𝑐 to 𝑏, and proceeds with the

6.4. ADAPTIVE INTEGRATION 41

above procedure independently on both halves. Integration can be stopped on
either half provided the tolerance is less than tol/2 (since the sum of both errors
must be less than tol). Otherwise, either half can proceed to Level 3, and so on.

As a side note, the two values of 𝐼 given above (for integration with step
size ℎ and ℎ/2) can be combined to give a more accurate value for I given by

𝐼 =
16𝑆2 − 𝑆1

15
+ O(ℎ7),

where the error terms of O(ℎ5) approximately cancel. This free lunch, so to
speak, is called Richardson’s extrapolation.

42 CHAPTER 6. INTEGRATION

Chapter 7

Ordinary differential
equations

We now discuss the numerical solution of ordinary differential equations. These
include the initial value problem, the boundary value problem, and the eigen-
value problem. Before proceeding to the development of numerical methods, we
review the analytical solution of some classic equations.

7.1 Examples of analytical solutions

7.1.1 Initial value problem

One classic initial value problem is the 𝑅𝐶 circuit. With 𝑅 the resistor and 𝐶
the capacitor, the differential equation for the charge 𝑞 on the capacitor is given
by

𝑅
𝑑𝑞

𝑑𝑡
+

𝑞

𝐶
= 0. (7.1)

If we consider the physical problem of a charged capacitor connected in a closed
circuit to a resistor, then the initial condition is 𝑞(0) = 𝑞0, where 𝑞0 is the initial
charge on the capacitor.

The differential equation (7.1) is separable, and separating and integrating
from time 𝑡 = 0 to 𝑡 yields ∫︁ 𝑞

𝑞0

𝑑𝑞

𝑞
= − 1

𝑅𝐶

∫︁ 𝑡

0

𝑑𝑡,

which can be integrated and solved for 𝑞 = 𝑞(𝑡):

𝑞(𝑡) = 𝑞0𝑒
−𝑡/𝑅𝐶 .

The classic second-order initial value problem is the 𝑅𝐿𝐶 circuit, with dif-
ferential equation

𝐿
𝑑2𝑞

𝑑𝑡2
+𝑅

𝑑𝑞

𝑑𝑡
+

𝑞

𝐶
= 0.

Here, a charged capacitor is connected to a closed circuit, and the initial condi-
tions satisfy

𝑞(0) = 𝑞0,
𝑑𝑞

𝑑𝑡
(0) = 0.

43

44 CHAPTER 7. ORDINARY DIFFERENTIAL EQUATIONS

The solution is obtained for the second-order equation by the ansatz

𝑞(𝑡) = 𝑒𝑟𝑡,

which results in the following so-called characteristic equation for 𝑟:

𝐿𝑟2 +𝑅𝑟 +
1

𝐶
= 0.

If the two solutions for 𝑟 are distinct and real, then the two found exponential
solutions can be multiplied by constants and added to form a general solution.
The constants can then be determined by requiring the general solution to satisfy
the two initial conditions. If the roots of the characteristic equation are complex
or degenerate, a general solution to the differential equation can also be found.

7.1.2 Boundary value problems

The dimensionless equation for the temperature 𝑦 = 𝑦(𝑥) along a linear heat-
conducting rod of length unity, and with an applied external heat source 𝑓(𝑥),
is given by the differential equation

− 𝑑2𝑦

𝑑𝑥2
= 𝑓(𝑥), (7.2)

with 0 ≤ 𝑥 ≤ 1. Boundary conditions are usually prescribed at the end points of
the rod, and here we assume that the temperature at both ends are maintained
at zero so that

𝑦(0) = 0, 𝑦(1) = 0.

The assignment of boundary conditions at two separate points is called a two-
point boundary value problem, in contrast to the initial value problem where the
boundary conditions are prescribed at only a single point. Two-point boundary
value problems typically require a more sophisticated algorithm for a numerical
solution than initial value problems.

Here, the solution of (7.2) can proceed by integration once 𝑓(𝑥) is specified.
We assume that

𝑓(𝑥) = 𝑥(1− 𝑥),

so that the maximum of the heat source occurs in the center of the rod, and
goes to zero at the ends.

The differential equation can then be written as

𝑑2𝑦

𝑑𝑥2
= −𝑥(1− 𝑥).

The first integration results in

𝑑𝑦

𝑑𝑥
=

∫︁
(𝑥2 − 𝑥)𝑑𝑥

=
𝑥3

3
− 𝑥2

2
+ 𝑐1,

7.1. EXAMPLES OF ANALYTICAL SOLUTIONS 45

where 𝑐1 is the first integration constant. Integrating again,

𝑦(𝑥) =

∫︁ (︂
𝑥3

3
− 𝑥2

2
+ 𝑐1

)︂
𝑑𝑥

=
𝑥4

12
− 𝑥3

6
+ 𝑐1𝑥+ 𝑐2,

where 𝑐2 is the second integration constant. The two integration constants are
determined by the boundary conditions. At 𝑥 = 0, we have

0 = 𝑐2,

and at 𝑥 = 1, we have

0 =
1

12
− 1

6
+ 𝑐1,

so that 𝑐1 = 1/12. Our solution is therefore

𝑦(𝑥) =
𝑥4

12
− 𝑥3

6
+

𝑥

12

=
1

12
𝑥(1− 𝑥)(1 + 𝑥− 𝑥2).

The temperature of the rod is maximum at 𝑥 = 1/2 and goes smoothly to zero
at the ends.

7.1.3 Eigenvalue problem

The classic eigenvalue problem obtained by solving the wave equation by sepa-
ration of variables is given by

𝑑2𝑦

𝑑𝑥2
+ 𝜆2𝑦 = 0,

with the two-point boundary conditions 𝑦(0) = 0 and 𝑦(1) = 0. Notice that
𝑦(𝑥) = 0 satisfies both the differential equation and the boundary conditions.
Other nonzero solutions for 𝑦 = 𝑦(𝑥) are possible only for certain discrete values
of 𝜆. These values of 𝜆 are called the eigenvalues of the differential equation.

We proceed by first finding the general solution to the differential equation.
It is easy to see that this solution is

𝑦(𝑥) = 𝐴 cos𝜆𝑥+𝐵 sin𝜆𝑥.

Imposing the first boundary condition at 𝑥 = 0, we obtain

𝐴 = 0.

The second boundary condition at 𝑥 = 1 results in

𝐵 sin𝜆 = 0.

Since we are searching for a solution where 𝑦 = 𝑦(𝑥) is not identically zero, we
must have

𝜆 = 𝜋, 2𝜋, 3𝜋,

46 CHAPTER 7. ORDINARY DIFFERENTIAL EQUATIONS

The corresponding negative values of 𝜆 are also solutions, but their inclusion
only changes the corresponding values of the unknown 𝐵 constant. A linear
superposition of all the solutions results in the general solution

𝑦(𝑥) =

∞∑︁
𝑛=1

𝐵𝑛 sin𝑛𝜋𝑥.

For each eigenvalue 𝑛𝜋, we say there is a corresponding eigenfunction sin𝑛𝜋𝑥.
When the differential equation can not be solved analytically, a numerical
method should be able to solve for both the eigenvalues and eigenfunctions.

7.2 Numerical methods: initial value problem

We begin with the simple Euler method, then discuss the more sophisticated
Runge-Kutta methods, and conclude with the Runge-Kutta-Fehlberg method,
as implemented in the MATLAB function ode45.m. Our differential equations
are for 𝑥 = 𝑥(𝑡), where the time 𝑡 is the independent variable, and we will make
use of the notation 𝑥̇ = 𝑑𝑥/𝑑𝑡. This notation is still widely used by physicists
and descends directly from the notation originally used by Newton.

7.2.1 Euler method

The Euler method is the most straightforward method to integrate a differential
equation. Consider the first-order differential equation

𝑥̇ = 𝑓(𝑡, 𝑥), (7.3)

with the initial condition 𝑥(0) = 𝑥0. Define 𝑡𝑛 = 𝑛Δ𝑡 and 𝑥𝑛 = 𝑥(𝑡𝑛). A Taylor
series expansion of 𝑥𝑛+1 results in

𝑥𝑛+1 = 𝑥(𝑡𝑛 +Δ𝑡)

= 𝑥(𝑡𝑛) + Δ𝑡𝑥̇(𝑡𝑛) + O(Δ𝑡2)

= 𝑥(𝑡𝑛) + Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛) + O(Δ𝑡2).

The Euler Method is therefore written as

𝑥𝑛+1 = 𝑥(𝑡𝑛) + Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛).

We say that the Euler method steps forward in time using a time-step Δ𝑡,
starting from the initial value 𝑥0 = 𝑥(0). The local error of the Euler Method
is O(Δ𝑡2). The global error, however, incurred when integrating to a time 𝑇 , is
a factor of 1/Δ𝑡 larger and is given by O(Δ𝑡). It is therefore customary to call
the Euler Method a first-order method.

7.2.2 Modified Euler method

This method is of a type that is called a predictor-corrector method. It is also
the first of what are Runge-Kutta methods. As before, we want to solve (7.3).
The idea is to average the value of 𝑥̇ at the beginning and end of the time step.
That is, we would like to modify the Euler method and write

𝑥𝑛+1 = 𝑥𝑛 +
1

2
Δ𝑡

(︀
𝑓(𝑡𝑛, 𝑥𝑛) + 𝑓(𝑡𝑛 +Δ𝑡, 𝑥𝑛+1)

)︀
.

7.2. NUMERICAL METHODS: INITIAL VALUE PROBLEM 47

The obvious problem with this formula is that the unknown value 𝑥𝑛+1 appears
on the right-hand-side. We can, however, estimate this value, in what is called
the predictor step. For the predictor step, we use the Euler method to find

𝑥𝑝
𝑛+1 = 𝑥𝑛 +Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛).

The corrector step then becomes

𝑥𝑛+1 = 𝑥𝑛 +
1

2
Δ𝑡

(︀
𝑓(𝑡𝑛, 𝑥𝑛) + 𝑓(𝑡𝑛 +Δ𝑡, 𝑥𝑝

𝑛+1)
)︀
.

The Modified Euler Method can be rewritten in the following form that we will
later identify as a Runge-Kutta method:

𝑘1 = Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛),

𝑘2 = Δ𝑡𝑓(𝑡𝑛 +Δ𝑡, 𝑥𝑛 + 𝑘1),

𝑥𝑛+1 = 𝑥𝑛 +
1

2
(𝑘1 + 𝑘2).

(7.4)

7.2.3 Second-order Runge-Kutta methods

We now derive all second-order Runge-Kutta methods. Higher-order methods
can be similarly derived, but require substantially more algebra.

We consider the differential equation given by (7.3). A general second-order
Runge-Kutta method may be written in the form

𝑘1 = Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛),

𝑘2 = Δ𝑡𝑓(𝑡𝑛 + 𝛼Δ𝑡, 𝑥𝑛 + 𝛽𝑘1),

𝑥𝑛+1 = 𝑥𝑛 + 𝑎𝑘1 + 𝑏𝑘2,

(7.5)

with 𝛼, 𝛽, 𝑎 and 𝑏 constants that define the particular second-order Runge-
Kutta method. These constants are to be constrained by setting the local error
of the second-order Runge-Kutta method to be O(Δ𝑡3). Intuitively, we might
guess that two of the constraints will be 𝑎+ 𝑏 = 1 and 𝛼 = 𝛽.

We compute the Taylor series of 𝑥𝑛+1 directly, and from the Runge-Kutta
method, and require them to be the same to order Δ𝑡2. First, we compute the
Taylor series of 𝑥𝑛+1. We have

𝑥𝑛+1 = 𝑥(𝑡𝑛 +Δ𝑡)

= 𝑥(𝑡𝑛) + Δ𝑡𝑥̇(𝑡𝑛) +
1

2
(Δ𝑡)2𝑥̈(𝑡𝑛) + O(Δ𝑡3).

Now,
𝑥̇(𝑡𝑛) = 𝑓(𝑡𝑛, 𝑥𝑛).

The second derivative is more complicated and requires partial derivatives. We
have

𝑥̈(𝑡𝑛) =
𝑑

𝑑𝑡
𝑓(𝑡, 𝑥(𝑡))

]︂
𝑡=𝑡𝑛

= 𝑓𝑡(𝑡𝑛, 𝑥𝑛) + 𝑥̇(𝑡𝑛)𝑓𝑥(𝑡𝑛, 𝑥𝑛)

= 𝑓𝑡(𝑡𝑛, 𝑥𝑛) + 𝑓(𝑡𝑛, 𝑥𝑛)𝑓𝑥(𝑡𝑛, 𝑥𝑛).

48 CHAPTER 7. ORDINARY DIFFERENTIAL EQUATIONS

Therefore,

𝑥𝑛+1 = 𝑥𝑛 +Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛) +
1

2
(Δ𝑡)

2 (︀
𝑓𝑡(𝑡𝑛, 𝑥𝑛) + 𝑓(𝑡𝑛, 𝑥𝑛)𝑓𝑥(𝑡𝑛, 𝑥𝑛)

)︀
. (7.6)

Second, we compute 𝑥𝑛+1 from the Runge-Kutta method given by (7.5).
Substituting in 𝑘1 and 𝑘2, we have

𝑥𝑛+1 = 𝑥𝑛 + 𝑎Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛) + 𝑏Δ𝑡𝑓
(︀
𝑡𝑛 + 𝛼Δ𝑡, 𝑥𝑛 + 𝛽Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛)

)︀
.

We Taylor series expand using

𝑓
(︀
𝑡𝑛 + 𝛼Δ𝑡, 𝑥𝑛 + 𝛽Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛)

)︀
= 𝑓(𝑡𝑛, 𝑥𝑛) + 𝛼Δ𝑡𝑓𝑡(𝑡𝑛, 𝑥𝑛) + 𝛽Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛)𝑓𝑥(𝑡𝑛, 𝑥𝑛) + O(Δ𝑡2).

The Runge-Kutta formula is therefore

𝑥𝑛+1 = 𝑥𝑛 + (𝑎+ 𝑏)Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛)

+ (Δ𝑡)2
(︀
𝛼𝑏𝑓𝑡(𝑡𝑛, 𝑥𝑛) + 𝛽𝑏𝑓(𝑡𝑛, 𝑥𝑛)𝑓𝑥(𝑡𝑛, 𝑥𝑛)

)︀
+O(Δ𝑡3). (7.7)

Comparing (7.6) and (7.7), we find

𝑎+ 𝑏 = 1,

𝛼𝑏 = 1/2,

𝛽𝑏 = 1/2.

There are three equations for four parameters, and there exists a family of
second-order Runge-Kutta methods.

The Modified Euler Method given by (7.4) corresponds to 𝛼 = 𝛽 = 1 and
𝑎 = 𝑏 = 1/2. Another second-order Runge-Kutta method, called the Midpoint
Method, corresponds to 𝛼 = 𝛽 = 1/2, 𝑎 = 0 and 𝑏 = 1. This method is written
as

𝑘1 = Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛),

𝑘2 = Δ𝑡𝑓

(︂
𝑡𝑛 +

1

2
Δ𝑡, 𝑥𝑛 +

1

2
𝑘1

)︂
,

𝑥𝑛+1 = 𝑥𝑛 + 𝑘2.

7.2.4 Higher-order Runge-Kutta methods

The general second-order Runge-Kutta method was given by (7.5). The general
form of the third-order method is given by

𝑘1 = Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛),

𝑘2 = Δ𝑡𝑓(𝑡𝑛 + 𝛼Δ𝑡, 𝑥𝑛 + 𝛽𝑘1),

𝑘3 = Δ𝑡𝑓(𝑡𝑛 + 𝛾Δ𝑡, 𝑥𝑛 + 𝛿𝑘1 + 𝜖𝑘2),

𝑥𝑛+1 = 𝑥𝑛 + 𝑎𝑘1 + 𝑏𝑘2 + 𝑐𝑘3.

The following constraints on the constants can be guessed: 𝛼 = 𝛽, 𝛾 = 𝛿 + 𝜖,
and 𝑎+ 𝑏+ 𝑐 = 1. Remaining constraints need to be derived.

7.2. NUMERICAL METHODS: INITIAL VALUE PROBLEM 49

The fourth-order method has a 𝑘1, 𝑘2, 𝑘3 and 𝑘4. The fifth-order method
requires up to 𝑘6. The table below gives the order of the method and the number
of stages required.

order 2 3 4 5 6 7 8
minimum # stages 2 3 4 6 7 9 11

Because of the jump in the number of stages required between the fourth-
order and fifth-order method, the fourth-order Runge-Kutta method has some
appeal. The general fourth-order method starts with 13 constants, and one then
finds 11 constraints. A particularly simple fourth-order method that has been
widely used is given by

𝑘1 = Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛),

𝑘2 = Δ𝑡𝑓

(︂
𝑡𝑛 +

1

2
Δ𝑡, 𝑥𝑛 +

1

2
𝑘1

)︂
,

𝑘3 = Δ𝑡𝑓

(︂
𝑡𝑛 +

1

2
Δ𝑡, 𝑥𝑛 +

1

2
𝑘2

)︂
,

𝑘4 = Δ𝑡𝑓 (𝑡𝑛 +Δ𝑡, 𝑥𝑛 + 𝑘3) ,

𝑥𝑛+1 = 𝑥𝑛 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) .

7.2.5 Adaptive Runge-Kutta Methods

As in adaptive integration, it is useful to devise an ode integrator that au-
tomatically finds the appropriate Δ𝑡. The Dormand-Prince Method, which is
implemented in MATLAB’s ode45.m, finds the appropriate step size by compar-
ing the results of a fifth-order and fourth-order method. It requires six function
evaluations per time step, and constructs both a fifth-order and a fourth-order
method from these function evaluations.

Suppose the fifth-order method finds 𝑥𝑛+1 with local error O(Δ𝑡6), and the
fourth-order method finds 𝑥′

𝑛+1 with local error O(Δ𝑡5). Let 𝜀 be the desired
error tolerance of the method, and let 𝑒 be the actual error. We can estimate 𝑒
from the difference between the fifth- and fourth-order methods; that is,

𝑒 = |𝑥𝑛+1 − 𝑥′
𝑛+1|.

Now 𝑒 is of O(Δ𝑡5), where Δ𝑡 is the step size taken. Let Δ𝜏 be the estimated
step size required to get the desired error 𝜀. Then we have

𝑒/𝜀 = (Δ𝑡)5/(Δ𝜏)5,

or solving for Δ𝜏 ,

Δ𝜏 = Δ𝑡
(︁𝜀
𝑒

)︁1/5

.

On the one hand, if 𝑒 < 𝜀, then we accept 𝑥𝑛+1 and do the next time step
using the larger value of Δ𝜏 . On the other hand, if 𝑒 > 𝜀, then we reject
the integration step and redo the time step using the smaller value of Δ𝜏 . In
practice, one usually increases the time step slightly less and decreases the time
step slightly more to prevent the waste of too many failed time steps.

50 CHAPTER 7. ORDINARY DIFFERENTIAL EQUATIONS

7.2.6 System of differential equations

Our numerical methods can be easily adapted to solve higher-order differential
equations, or equivalently, a system of differential equations. First, we show how
a second-order differential equation can be reduced to two first-order equations.
Consider

𝑥̈ = 𝑓(𝑡, 𝑥, 𝑥̇).

This second-order equation can be rewritten as two first-order equations by
defining 𝑢 = 𝑥̇. We then have the system

𝑥̇ = 𝑢,

𝑢̇ = 𝑓(𝑡, 𝑥, 𝑢).

This trick also works for higher-order equation. For another example, the third-
order equation

...
𝑥 = 𝑓(𝑡, 𝑥, 𝑥̇, 𝑥̈),

can be written as

𝑥̇ = 𝑢,

𝑢̇ = 𝑣,

𝑣̇ = 𝑓(𝑡, 𝑥, 𝑢, 𝑣).

Now, we show how to generalize Runge-Kutta methods to a system of dif-
ferential equations. As an example, consider the following system of two odes,

𝑥̇ = 𝑓(𝑡, 𝑥, 𝑦),

𝑦̇ = 𝑔(𝑡, 𝑥, 𝑦),

with the initial conditions 𝑥(0) = 𝑥0 and 𝑦(0) = 𝑦0. The generalization of the

7.3. NUMERICAL METHODS: BOUNDARY VALUE PROBLEM 51

commonly used fourth-order Runge-Kutta method would be

𝑘1 = Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛, 𝑦𝑛),

𝑙1 = Δ𝑡𝑔(𝑡𝑛, 𝑥𝑛, 𝑦𝑛),

𝑘2 = Δ𝑡𝑓

(︂
𝑡𝑛 +

1

2
Δ𝑡, 𝑥𝑛 +

1

2
𝑘1, 𝑦𝑛 +

1

2
𝑙1

)︂
,

𝑙2 = Δ𝑡𝑔

(︂
𝑡𝑛 +

1

2
Δ𝑡, 𝑥𝑛 +

1

2
𝑘1, 𝑦𝑛 +

1

2
𝑙1

)︂
,

𝑘3 = Δ𝑡𝑓

(︂
𝑡𝑛 +

1

2
Δ𝑡, 𝑥𝑛 +

1

2
𝑘2, 𝑦𝑛 +

1

2
𝑙2

)︂
,

𝑙3 = Δ𝑡𝑔

(︂
𝑡𝑛 +

1

2
Δ𝑡, 𝑥𝑛 +

1

2
𝑘2, 𝑦𝑛 +

1

2
𝑙2

)︂
,

𝑘4 = Δ𝑡𝑓 (𝑡𝑛 +Δ𝑡, 𝑥𝑛 + 𝑘3, 𝑦𝑛 + 𝑙3) ,

𝑙4 = Δ𝑡𝑔 (𝑡𝑛 +Δ𝑡, 𝑥𝑛 + 𝑘3, 𝑦𝑛 + 𝑙3) ,

𝑥𝑛+1 = 𝑥𝑛 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) ,

𝑦𝑛+1 = 𝑦𝑛 +
1

6
(𝑙1 + 2𝑙2 + 2𝑙3 + 𝑙4) .

7.3 Numerical methods: boundary value prob-
lem

7.3.1 Finite difference method

We consider first the differential equation

− 𝑑2𝑦

𝑑𝑥2
= 𝑓(𝑥), 0 ≤ 𝑥 ≤ 1, (7.8)

with two-point boundary conditions

𝑦(0) = 𝐴, 𝑦(1) = 𝐵.

Equation (7.8) can be solved by quadrature, but here we will demonstrate a
numerical solution using a finite difference method.

We begin by discussing how to numerically approximate derivatives. Con-
sider the Taylor series approximation for 𝑦(𝑥+ ℎ) and 𝑦(𝑥− ℎ), given by

𝑦(𝑥+ ℎ) = 𝑦(𝑥) + ℎ𝑦′(𝑥) +
1

2
ℎ2𝑦′′(𝑥) +

1

6
ℎ3𝑦′′′(𝑥) +

1

24
ℎ4𝑦′′′′(𝑥) + . . . ,

𝑦(𝑥− ℎ) = 𝑦(𝑥)− ℎ𝑦′(𝑥) +
1

2
ℎ2𝑦′′(𝑥)− 1

6
ℎ3𝑦′′′(𝑥) +

1

24
ℎ4𝑦′′′′(𝑥) +

52 CHAPTER 7. ORDINARY DIFFERENTIAL EQUATIONS

The standard definitions of the derivatives give the first-order approximations

𝑦′(𝑥) =
𝑦(𝑥+ ℎ)− 𝑦(𝑥)

ℎ
+O(ℎ),

𝑦′(𝑥) =
𝑦(𝑥)− 𝑦(𝑥− ℎ)

ℎ
+O(ℎ).

The more widely-used second-order approximation is called the central differ-
ence approximation and is given by

𝑦′(𝑥) =
𝑦(𝑥+ ℎ)− 𝑦(𝑥− ℎ)

2ℎ
+O(ℎ2).

The finite difference approximation to the second derivative can be found from
considering

𝑦(𝑥+ ℎ) + 𝑦(𝑥− ℎ) = 2𝑦(𝑥) + ℎ2𝑦′′(𝑥) +
1

12
ℎ4𝑦′′′′(𝑥) + . . . ,

from which we find

𝑦′′(𝑥) =
𝑦(𝑥+ ℎ)− 2𝑦(𝑥) + 𝑦(𝑥− ℎ)

ℎ2
+O(ℎ2).

Sometimes a second-order method is required for 𝑥 on the boundaries of the
domain. For a boundary point on the left, a second-order forward difference
method requires the additional Taylor series

𝑦(𝑥+ 2ℎ) = 𝑦(𝑥) + 2ℎ𝑦′(𝑥) + 2ℎ2𝑦′′(𝑥) +
4

3
ℎ3𝑦′′′(𝑥) +

We combine the Taylor series for 𝑦(𝑥+ ℎ) and 𝑦(𝑥+ 2ℎ) to eliminate the term
proportional to ℎ2:

𝑦(𝑥+ 2ℎ)− 4𝑦(𝑥+ ℎ) = −3𝑦(𝑥)− 2ℎ𝑦′(𝑥) + O(h3).

Therefore,

𝑦′(𝑥) =
−3𝑦(𝑥) + 4𝑦(𝑥+ ℎ)− 𝑦(𝑥+ 2ℎ)

2ℎ
+O(ℎ2).

For a boundary point on the right, we send ℎ → −ℎ to find

𝑦′(𝑥) =
3𝑦(𝑥)− 4𝑦(𝑥− ℎ) + 𝑦(𝑥− 2ℎ)

2ℎ
+O(ℎ2).

We now write a finite difference scheme to solve (7.8). We discretize 𝑥 by
defining 𝑥𝑖 = 𝑖ℎ, 𝑖 = 0, 1, . . . , 𝑛 + 1. Since 𝑥𝑛+1 = 1, we have ℎ = 1/(𝑛 + 1).
The functions 𝑦(𝑥) and 𝑓(𝑥) are discretized as 𝑦𝑖 = 𝑦(𝑥𝑖) and 𝑓𝑖 = 𝑓(𝑥𝑖). The
second-order differential equation (7.8) then becomes for the interior points of
the domain

−𝑦𝑖−1 + 2𝑦𝑖 − 𝑦𝑖+1 = ℎ2𝑓𝑖, 𝑖 = 1, 2, . . . 𝑛,

with the boundary conditions 𝑦0 = 𝐴 and 𝑦𝑛+1 = 𝐵. We therefore have a linear
system of equations to solve. The first and 𝑛th equation contain the boundary
conditions and are given by

2𝑦1 − 𝑦2 = ℎ2𝑓1 +𝐴,

−𝑦𝑛−1 + 2𝑦𝑛 = ℎ2𝑓𝑛 +𝐵.

7.3. NUMERICAL METHODS: BOUNDARY VALUE PROBLEM 53

The second and third equations, etc., are

−𝑦1 + 2𝑦2 − 𝑦3 = ℎ2𝑓2,

−𝑦2 + 2𝑦3 − 𝑦4 = ℎ2𝑓3,

. . .

In matrix form, we have⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 . . . 0 0 0
−1 2 −1 0 . . . 0 0 0
0 −1 2 −1 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . −1 2 −1
0 0 0 0 . . . 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑦3
...

𝑦𝑛−1

𝑦𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ℎ2𝑓1 +𝐴
ℎ2𝑓2
ℎ2𝑓3
...

ℎ2𝑓𝑛−1

ℎ2𝑓𝑛 +𝐵

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The matrix is tridiagonal, and a numerical solution by Guassian elimination
can be done quickly. The matrix itself is easily constructed using the MATLAB
function diag.m and ones.m. As excerpted from the MATLAB help page, the
function call ones(m,n) returns an m-by-n matrix of ones, and the function call
diag(v,k), when v is a vector with n components, is a square matrix of order
n+abs(k) with the elements of v on the k-th diagonal: 𝑘 = 0 is the main diag-
onal, 𝑘 > 0 is above the main diagonal and 𝑘 < 0 is below the main diagonal.
The 𝑛× 𝑛 matrix above can be constructed by the MATLAB code

M=diag(-ones(n-1,1),-1)+diag(2*ones(n,1),0)+diag(-ones(n-1,1),1); .

The right-hand-side, provided f is a given n-by-1 vector, can be constructed
by the MATLAB code

b=h^2*f; b(1)=b(1)+A; b(n)=b(n)+B;

and the solution for u is given by the MATLAB code

y=M∖b;

7.3.2 Shooting method

The finite difference method can solve linear odes. For a general ode of the form

𝑑2𝑦

𝑑𝑥2
= 𝑓(𝑥, 𝑦, 𝑑𝑦/𝑑𝑥),

with 𝑦(0) = 𝐴 and 𝑦(1) = 𝐵, we use a shooting method. First, we formulate
the ode as an initial value problem. We have

𝑑𝑦

𝑑𝑥
= 𝑧,

𝑑𝑧

𝑑𝑥
= 𝑓(𝑥, 𝑦, 𝑧).

54 CHAPTER 7. ORDINARY DIFFERENTIAL EQUATIONS

The initial condition 𝑦(0) = 𝐴 is known, but the second initial condition 𝑧(0) = 𝑏
is unknown. Our goal is to determine 𝑏 such that 𝑦(1) = 𝐵.

In fact, this is a root-finding problem for an appropriately defined function.
We define the function 𝐹 = 𝐹 (𝑏) such that

𝐹 (𝑏) = 𝑦(1)−𝐵.

In other words, 𝐹 (𝑏) is the difference between the value of 𝑦(1) obtained from
integrating the differential equations using the initial condition 𝑧(0) = 𝑏, and
𝐵. Our root-finding routine will want to solve 𝐹 (𝑏) = 0. (The method is called
shooting because the slope of the solution curve for 𝑦 = 𝑦(𝑥) at 𝑥 = 0 is given
by 𝑏, and the solution hits the value 𝑦(1) at 𝑥 = 1. This looks like pointing a
gun and trying to shoot the target, which is 𝐵.)

To determine the value of 𝑏 that solves 𝐹 (𝑏) = 0, we iterate using the Secant
method, given by

𝑏𝑛+1 = 𝑏𝑛 − 𝐹 (𝑏𝑛)
𝑏𝑛 − 𝑏𝑛−1

𝐹 (𝑏𝑛)− 𝐹 (𝑏𝑛−1)
.

We need to start with two initial guesses for 𝑏, solving the ode for the two
corresponding values of 𝑦(1). Then the Secant Method will give us the next value
of 𝑏 to try, and we iterate until |𝑦(1) − 𝐵| < tol, where tol is some specified
tolerance for the error.

7.4 Numerical methods: eigenvalue problem

For illustrative purposes, we develop our numerical methods for what is perhaps
the simplest eigenvalue ode. With 𝑦 = 𝑦(𝑥) and 0 ≤ 𝑥 ≤ 1, this simple ode is
given by

𝑦′′ + 𝜆2𝑦 = 0. (7.9)

To solve (7.9) numerically, we will develop both a finite difference method and
a shooting method. Furthermore, we will show how to solve (7.9) with homo-
geneous boundary conditions on either the function 𝑦 or its derivative 𝑦′.

7.4.1 Finite difference method

We first consider solving (7.9) with the homogeneous boundary conditions 𝑦(0) =
𝑦(1) = 0. In this case, we have already shown that the eigenvalues of (7.9) are
given by 𝜆 = 𝜋, 2𝜋, 3𝜋,

With 𝑛 interior points, we have 𝑥𝑖 = 𝑖ℎ for 𝑖 = 0, . . . , 𝑛 + 1, and ℎ =
1/(𝑛 + 1). Using the centered-finite-difference approximation for the second
derivative, (7.9) becomes

𝑦𝑖−1 − 2𝑦𝑖 + 𝑦𝑖+1 = −ℎ2𝜆2𝑦𝑖. (7.10)

Applying the boundary conditions 𝑦0 = 𝑦𝑛+1 = 0, the first equation with 𝑖 = 1,
and the last equation with 𝑖 = 𝑛, are given by

−2𝑦1 + 𝑦2 = −ℎ2𝜆2𝑦1,

𝑦𝑛−1 − 2𝑦𝑛 = −ℎ2𝜆2𝑦𝑛.

7.4. NUMERICAL METHODS: EIGENVALUE PROBLEM 55

The remaining 𝑛− 2 equations are given by (7.10) for 𝑖 = 2, . . . , 𝑛− 1.
It is of interest to see how the solution develops with increasing 𝑛. The

smallest possible value is 𝑛 = 1, corresponding to a single interior point, and
since ℎ = 1/2 we have

−2𝑦1 = −1

4
𝜆2𝑦1,

so that 𝜆2 = 8, or 𝜆 = 2
√
2 = 2.8284. This is to be compared to the first

eigenvalue which is 𝜆 = 𝜋. When 𝑛 = 2, we have ℎ = 1/3, and the resulting
two equations written in matrix form are given by(︂

−2 1
1 −2

)︂(︂
𝑦1
𝑦2

)︂
= −1

9
𝜆2

(︂
𝑦1
𝑦2

)︂
.

This is a matrix eigenvalue problem with the eigenvalue given by 𝜇 = −𝜆2/9.
The solution for 𝜇 is arrived at by solving

det

(︂
−2− 𝜇 1

1 −2− 𝜇

)︂
= 0,

with resulting quadratic equation

(2 + 𝜇)2 − 1 = 0.

The solutions are 𝜇 = −1,−3, and since 𝜆 = 3
√
−𝜇, we have 𝜆 = 3, 3

√
3 =

5.1962. These two eigenvalues serve as rough approximations to the first two
eigenvalues 𝜋 and 2𝜋.

With A an 𝑛-by-𝑛 matrix, the MATLAB variable mu=eig(A) is a vector
containing the 𝑛 eigenvalues of the matrix A. The built-in function eig.m can
therefore be used to find the eigenvalues. With 𝑛 grid points, the smaller eigen-
values will converge more rapidly than the larger ones.

We can also consider boundary conditions on the derivative, or mixed bound-
ary conditions. For example, consider the mixed boundary conditions given by
𝑦(0) = 0 and 𝑦′(1) = 0. The eigenvalues of (7.9) can then be determined
analytically to be 𝜆𝑖 = (𝑖− 1/2)𝜋, with 𝑖 a natural number.

The difficulty we now face is how to implement a boundary condition on
the derivative. Our computation of 𝑦′′ uses a second-order method, and we
would like the computation of the first derivative to also be second order. The
condition 𝑦′(1) = 0 occurs on the right-most boundary, and we can make use of
the second-order backward-difference approximation to the derivative that we
have previously derived. This finite-difference approximation for 𝑦′(1) can be
written as

𝑦′𝑛+1 =
3𝑦𝑛+1 − 4𝑦𝑛 + 𝑦𝑛−1

2ℎ
. (7.11)

Now, the 𝑛th finite-difference equation was given by

𝑦𝑛−1 − 2𝑦𝑛 + 𝑦𝑛+1 = −ℎ2𝑦𝑛,

and we now replace the value 𝑦𝑛+1 using (7.11); that is,

𝑦𝑛+1 =
1

3

(︀
2ℎ𝑦′𝑛+1 + 4𝑦𝑛 − 𝑦𝑛−1

)︀
.

56 CHAPTER 7. ORDINARY DIFFERENTIAL EQUATIONS

Implementing the boundary condition 𝑦′𝑛+1 = 0, we have

𝑦𝑛+1 =
4

3
𝑦𝑛 − 1

3
𝑦𝑛−1.

Therefore, the 𝑛th finite-difference equation becomes

2

3
𝑦𝑛−1 −

2

3
𝑦𝑛 = −ℎ2𝜆2𝑦𝑛.

For example, when 𝑛 = 2, the finite difference equations become(︂
−2 1

2
3 − 2

3

)︂(︂
𝑦1
𝑦2

)︂
= −1

9
𝜆2

(︂
𝑦1
𝑦2

)︂
.

The eigenvalues of the matrix are now the solution of

(𝜇+ 2)

(︂
𝜇+

2

3

)︂
− 2

3
= 0,

or
3𝜇2 + 8𝜇+ 2 = 0.

Therefore, 𝜇 = (−4 ±
√
10)/3, and we find 𝜆 = 1.5853, 4.6354, which are ap-

proximations to 𝜋/2 and 3𝜋/2.

7.4.2 Shooting method

We apply the shooting method to solve (7.9) with boundary conditions 𝑦(0) =
𝑦(1) = 0. The initial value problem to solve is

𝑦′ = 𝑧,

𝑧′ = −𝜆2𝑦,

with known boundary condition 𝑦(0) = 0 and an unknown boundary condition
on 𝑦′(0). In fact, any nonzero boundary condition on 𝑦′(0) can be chosen: the
differential equation is linear and the boundary conditions are homogeneous, so
that if 𝑦(𝑥) is an eigenfunction then so is 𝐴𝑦(𝑥). What we need to find here is
the value of 𝜆 such that 𝑦(1) = 0. In other words, choosing 𝑦′(0) = 1, we solve

𝐹 (𝜆) = 0, (7.12)

where 𝐹 (𝜆) = 𝑦(1), obtained by solving the initial value problem. Again, an
iteration for the roots of 𝐹 (𝜆) can be done using the Secant Method. For the
eigenvalue problem, there are an infinite number of roots, and the choice of the
two initial guesses for 𝜆 will then determine to which root the iteration will
converge.

For this simple problem, it is possible to write explicitly the equation 𝐹 (𝜆) =
0. The general solution to (7.9) is given by

𝑦(𝑥) = 𝐴 cos (𝜆𝑥) +𝐵 sin (𝜆𝑥).

The initial condition 𝑦(0) = 0 yields 𝐴 = 0. The initial condition 𝑦′(0) = 1
yields

𝐵 = 1/𝜆.

7.4. NUMERICAL METHODS: EIGENVALUE PROBLEM 57

Therefore, the solution to the initial value problem is

𝑦(𝑥) =
sin (𝜆𝑥)

𝜆
.

The function 𝐹 (𝜆) = 𝑦(1) is therefore given by

𝐹 (𝜆) =
sin𝜆

𝜆
,

and the roots occur when 𝜆 = 𝜋, 2𝜋,
If the boundary conditions were 𝑦(0) = 0 and 𝑦′(1) = 0, for example, then

we would simply redefine 𝐹 (𝜆) = 𝑦′(1). We would then have

𝐹 (𝜆) =
cos𝜆

𝜆
,

and the roots occur when 𝜆 = 𝜋/2, 3𝜋/2,

	IEEE Arithmetic
	Definitions
	Numbers with a decimal or binary point
	Examples of binary numbers
	Hex numbers
	4-bit unsigned integers as hex numbers
	IEEE single precision format:
	Special numbers
	Examples of computer numbers
	Inexact numbers
	Find smallest positive integer that is not exact in single precision

	Machine epsilon
	IEEE double precision format
	Roundoff error example

	Root Finding
	Bisection Method
	Newton's Method
	Secant Method
	Estimate 2=1.41421356 using Newton's Method
	Example of fractals using Newton's Method

	Order of convergence
	Newton's Method
	Secant Method

	Systems of equations
	Gaussian Elimination
	LU decomposition
	Partial pivoting
	Operation counts
	System of nonlinear equations

	Least-squares approximation
	Fitting a straight line
	Fitting to a linear combination of functions

	Interpolation
	Polynomial interpolation
	Vandermonde polynomial
	Lagrange polynomial
	Newton polynomial

	Piecewise linear interpolation
	Cubic spline interpolation
	Multidimensional interpolation

	Integration
	Elementary formulas
	Midpoint rule
	Trapezoidal rule
	Simpson's rule

	Composite rules
	Trapezoidal rule
	Simpson's rule

	Local versus global error
	Adaptive integration

	Ordinary differential equations
	Examples of analytical solutions
	Initial value problem
	Boundary value problems
	Eigenvalue problem

	Numerical methods: initial value problem
	Euler method
	Modified Euler method
	Second-order Runge-Kutta methods
	Higher-order Runge-Kutta methods
	Adaptive Runge-Kutta Methods
	System of differential equations

	Numerical methods: boundary value problem
	Finite difference method
	Shooting method

	Numerical methods: eigenvalue problem
	Finite difference method
	Shooting method

