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Intro to Qualitative theory of SODE
A vocabulary

Dynamical system

ϕ(t, x), t ∈ R, x ∈ S

ϕ : R× S → S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dynamical system
S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .state space

Conditions

(i) ϕ(0, x0) = x0, ∀x0 ∈ S
(ii) ϕ(t, ϕ(s, x0)) = ϕ(t+ s, x0), ∀s, t ∈ R, ∀x0 ∈ S
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Flow associated to SODE
What is a flow and conditions on it

Flow

Let us have a SODE
x′(t) = F (x(t))

A mapping
ϕ : R× S → S

for which holds the following,

(i) ϕ(0, x0) = x0, ∀x0 ∈ S
(ii) ϕ(t, ϕ(s, x0)) = ϕ(t+ s, x0), ∀s, t ∈ R, ∀x0 ∈ S
(iii) dϕx(t)

dt = F (ϕx(t)), ∀t ∈ R, ∀x0 ∈ S

is called a flow associated to the SODE.

Ex.1: Finding a flow to an ODE

Find a flow to the differential equation x′ = xp, ∀p ∈ N
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Solution to Ex.1
(Solve the ODE and specify C in the manner that (i)–(iii) hold)

Case: p = 1

Find a general solution

x′ = x→ x(t, C) = Cet

Specify C in a way that (i)–(iii) holds

(i) → x(0, C) = Ce0 = C = x0
(ii) → x(t, x(s, x0) = x0e

set = x0e
t+s = x(t+ s, x0)

(iii) → dx(t,x0)
dt = x0e

t = x(t, x0) = F (x(t, x0)

Case: p ≥ 2

Try it as a homework. It may happen, that the flow cannot be found.
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System of linear ODEs with constant coefficients
Simplest case of SODE

Ex.2: Competitive reactions

Let us have a reaction scheme,

a
k1→ b

k2→ c

a
k3→ e

generating the corresponding differential equations,

x′ =


a′

b′

c′

e′

 =


−k1a− k3a
k1a− k2b

k2b
k3a

 =


−k1 − k3 0 0 0

k1 −k2 0 0
0 k2 0 0
k3 0 0 0



a
b
c
e

 = Ax

Find dependence of contcentrations on time corresponding to the
following parameter values,

a0 = 1, b0 = c0 = e0 = 0, k1 = 1, k2 = 1/2, k3 = 1/10
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Solution algorithm
(eigenvalues→ eigenvectors→ general solution→ particular solution)

x′ = Ax, x ∈ Rn, A ∈ Rn×n

Eigenvalues, λi, i = 1, 2, . . . , n

1 Construct characteristic polynomial and find its roots,
det (A− λE) = 0→ λ1, λ2, . . . , λn

2 n = 2→ 3 possibilities

(i) λ1,2 ∈ R, λ1 6= λ2

(ii) λ1,2 ∈ C, λ1,2 = a± ib, a, b ∈ R
(iii) λ1,2 ∈ R, λ1 = λ2 = λ0

Eigenvectors, hi, i = 1, 2

case (i) We known this, λ1 → h1, λ2 → h2, h1, h2 ∈ R2

case (ii) We known this, λ1 → h1 = u+ iv, h2 = u− iv, u, v ∈ R2

case (iii) Hic sunt leones
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Solution algorithm
eigenvectors – case of λ1 = λ2 = λ0 → general solution

Possibility 1: dimN (A− λ0E) = 2

Same as case (i), λ0 → h1, λ0 → h2, h1, h2 ∈ R2

Possibility 2: dimN (A− λ0E) = 1

There are no 2 linearly independent eigenvectors corresponding to λ0
=⇒ generalized eigenvector, k

1 (A− λ0E)h = 0→ h

2 (A− λ0E)k = h→ k

General solution

case (i) xG(t, C) = C1e
λ1th1 + C2e

λ2th1

case (ii) xG(t, C) = C1e
at(u cos bt−v sin bt)+C2e

at(v cos bt+u sin bt)

case (iii) xG(t, C) = C1e
λ0th+ C2e

λ0t(th+ k)
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Solution to Ex.2
(eigenvalues→ eigenvectors→ general solution→ particular solution)
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Solution to Ex.2
(eigenvalues→ eigenvectors→ general solution→ particular solution)

Note: Might be too big of a leap. Lets start with something smaller
and return to this later.
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Ex.3
case (i), λ1,2 ∈ R, λ1 6= λ2

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 3
1 4

)
, x(t = 0) =

(
1
0

)
.
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Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 3
1 4

)
, x(t = 0) =

(
1
0

)
.

Eigenvalues

1 ch. p.:

2 λ1 = 5, λ2 = 1

λ1,2 =
6±
√
36− 20

2
=

6± 4

2

↗
↘

5

1
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x′ = Ax, A =

(
2 3
1 4

)
, x(t = 0) =

(
1
0

)
.
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2 λ1 = 5, λ2 = 1

λ1,2 =
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√
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=
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2

↗
↘

5

1
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Eigenvectors

Martin Isoz, UCT Prague Math for ChemEng, SODE – Qualitative theory:Solving SODE



Ex.3
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Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 3
1 4

)
, x(t = 0) =

(
1
0

)
.

Eigenvectors

λ1 = 5, λ2 = 1

1 (A− λ1E)h1 = 0
2 (A− λ2E)h2 = 0
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Ex.3
case (i), λ1,2 ∈ R, λ1 6= λ2

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 3
1 4

)
, x(t = 0) =

(
1
0

)
.

General solution

xG(t, C) =

n(=2)∑
i=1

Cie
λithi

1 λ1 = 5, λ2 = 1

λ1 = 5, h1 =

(
1
1

)
, λ2 = 1, h2 =

(
−3
1

)
2 General solution
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xG(t, C) =
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Cie
λithi

1 λ1 = 5, λ2 = 1

λ1 = 5, h1 =

(
1
1

)
, λ2 = 1, h2 =

(
−3
1

)
2 General solution

xG(t, C) = C1e
5t

(
1
1

)
+ C2e

t

(
−3
1

)
=

(
C1e

5t − 3C2e
t

C1e
5t + C2e

t

)
Martin Isoz, UCT Prague Math for ChemEng, SODE – Qualitative theory:Solving SODE



Ex.3
case (i), λ1,2 ∈ R, λ1 6= λ2

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 3
1 4

)
, x(t = 0) =

(
1
0

)
.

General solution

xG(t, C) =

n(=2)∑
i=1

Cie
λithi

1 λ1 = 5, λ2 = 1

λ1 = 5, h1 =

(
1
1

)
, λ2 = 1, h2 =

(
−3
1

)
2 General solution

xG(t, C) = C1e
5t

(
1
1

)
+ C2e

t

(
−3
1

)
=
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Ex.3
case (i), λ1,2 ∈ R, λ1 6= λ2

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 3
1 4

)
, x(t = 0) =

(
1
0

)
.

Particular solution

xG(t, C) =

n(=2)∑
i=1

Cie
λithi

1 Substitute from the initial condition

xG(0, C) = C1 · 1 ·
(
1
1

)
+ C2 · 1 ·

(
−3
1

)
=

(
1
0

)
2 Construct and solve set of LAE(

1 −3
1 1

)
·
(
C1

C2

)
=

(
1
0

)
GE−→

(
C1

C2

)
=

1

4

(
1
−1

)
3 Particular solution: xP (t) = 1

4 (e
5t + 3et, e5t − et)T
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(
1
0

)

2 Construct and solve set of LAE(
1 −3
1 1

)
·
(
C1

C2

)
=

(
1
0

)
GE−→

(
C1

C2

)
=

1

4

(
1
−1

)
3 Particular solution: xP (t) = 1

4 (e
5t + 3et, e5t − et)T
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Ex.3
case (i), λ1,2 ∈ R, λ1 6= λ2

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 3
1 4

)
, x(t = 0) =

(
1
0

)
.

Particular solution

xG(t, C) =

n(=2)∑
i=1

Cie
λithi

1 Substitute from the initial condition

xG(0, C) = C1 · 1 ·
(
1
1

)
+ C2 · 1 ·

(
−3
1

)
=

(
1
0

)
2 Construct and solve set of LAE(

1 −3
1 1

)
·
(
C1

C2

)
=

(
1
0

)
GE−→

(
C1

C2

)
=

1

4

(
1
−1

)

3 Particular solution: xP (t) = 1
4 (e

5t + 3et, e5t − et)T
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Ex.3
case (i), λ1,2 ∈ R, λ1 6= λ2

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 3
1 4

)
, x(t = 0) =

(
1
0

)
.

Particular solution

xG(t, C) =

n(=2)∑
i=1

Cie
λithi

1 Substitute from the initial condition

xG(0, C) = C1 · 1 ·
(
1
1

)
+ C2 · 1 ·

(
−3
1

)
=

(
1
0

)
2 Construct and solve set of LAE(

1 −3
1 1

)
·
(
C1

C2

)
=

(
1
0

)
GE−→

(
C1

C2

)
=

1

4

(
1
−1

)

3 Particular solution: xP (t) = 1
4 (e

5t + 3et, e5t − et)T
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Ex.3
case (i), λ1,2 ∈ R, λ1 6= λ2

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 3
1 4

)
, x(t = 0) =

(
1
0

)
.

Particular solution

xG(t, C) =

n(=2)∑
i=1

Cie
λithi

1 Substitute from the initial condition

xG(0, C) = C1 · 1 ·
(
1
1

)
+ C2 · 1 ·

(
−3
1

)
=

(
1
0

)
2 Construct and solve set of LAE(

1 −3
1 1

)
·
(
C1

C2

)
=

(
1
0

)
GE−→

(
C1

C2

)
=

1

4

(
1
−1

)
3 Particular solution: xP (t) = 1

4 (e
5t + 3et, e5t − et)T
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Ex.4
case (ii), λ1,2 ∈ C, λ1,2 = a± ib, a, b ∈ R

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 −1
1 2

)
, x(t = 0) =

(
1
0

)
.
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Ex.4
case (ii), λ1,2 ∈ C, λ1,2 = a± ib, a, b ∈ R

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 −1
1 2

)
, x(t = 0) =

(
1
0

)
.

Eigenvalues

1 ch. p.:

2 λ1 = 2 + i, λ2 = 2− i

λ1,2 =
4±
√
16− 20

2
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Ex.4
case (ii), λ1,2 ∈ C, λ1,2 = a± ib, a, b ∈ R

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 −1
1 2

)
, x(t = 0) =

(
1
0

)
.

Eigenvalues

1 ch. p.: λ2 − TrAλ+ detA = 0

2 λ1 = 2 + i, λ2 = 2− i

λ1,2 =
4±
√
16− 20

2
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Ex.4
case (ii), λ1,2 ∈ C, λ1,2 = a± ib, a, b ∈ R

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 −1
1 2

)
, x(t = 0) =

(
1
0

)
.

Eigenvalues

1 ch. p.: λ2 − TrAλ+ detA = 0 → λ2 − 4λ+ 5 = 0

2 λ1 = 2 + i, λ2 = 2− i

λ1,2 =
4±
√
16− 20

2
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Ex.4
case (ii), λ1,2 ∈ C, λ1,2 = a± ib, a, b ∈ R

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 −1
1 2

)
, x(t = 0) =

(
1
0

)
.

Eigenvalues

1 ch. p.: λ2 − TrAλ+ detA = 0 → λ2 − 4λ+ 5 = 0

2 λ1 = 2 + i, λ2 = 2− i

λ1,2 =
4±
√
16− 20

2
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Ex.4
case (ii), λ1,2 ∈ C, λ1,2 = a± ib, a, b ∈ R

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 −1
1 2

)
, x(t = 0) =

(
1
0

)
.

Eigenvalues

1 ch. p.: λ2 − TrAλ+ detA = 0 → λ2 − 4λ+ 5 = 0

2 λ1 = 2 + i, λ2 = 2− i

λ1,2 =
4±
√
16− 20

2

Eigenvectors
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Ex.4
case (ii), λ1,2 ∈ C, λ1,2 = a± ib, a, b ∈ R

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 −1
1 2

)
, x(t = 0) =

(
1
0

)
.

Eigenvectors

λ1 = 2 + i

1 (A− λ1E)h1 = 0

2 h1
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Ex.4
case (ii), λ1,2 ∈ C, λ1,2 = a± ib, a, b ∈ R

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 −1
1 2

)
, x(t = 0) =

(
1
0

)
.

Eigenvectors

λ1 = 2 + i

1 (A− λ1E)h1 = 0

2 h1
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Ex.4
case (ii), λ1,2 ∈ C, λ1,2 = a± ib, a, b ∈ R

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 −1
1 2

)
, x(t = 0) =

(
1
0

)
.

Eigenvectors

λ1 = 2 + i

1 (A− λ1E)h1 = 0[(
2 −1
1 2

)
− (2 + i)

(
1 0
0 1

)]
h1 =

(
−i −1
1 −i

)
h1 =

(
0
0

)

2 h1
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Ex.4
case (ii), λ1,2 ∈ C, λ1,2 = a± ib, a, b ∈ R

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 −1
1 2

)
, x(t = 0) =

(
1
0

)
.

Eigenvectors

λ1 = 2 + i

1 (A− λ1E)h1 = 0[(
2 −1
1 2

)
− (2 + i)

(
1 0
0 1

)]
h1 =

(
−i −1
1 −i

)
h1 =

(
0
0

)
2 h1

Martin Isoz, UCT Prague Math for ChemEng, SODE – Qualitative theory:Solving SODE



Ex.4
case (ii), λ1,2 ∈ C, λ1,2 = a± ib, a, b ∈ R

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 −1
1 2

)
, x(t = 0) =

(
1
0

)
.

Eigenvectors

λ1 = 2 + i

1 (A− λ1E)h1 = 0[(
2 −1
1 2

)
− (2 + i)

(
1 0
0 1

)]
h1 =

(
−i −1
1 −i

)
h1 =

(
0
0

)
2 h1

h1 =

(
0
1

)
+ i

(
1
0

)
= u+ iv
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Ex.4
case (ii), λ1,2 ∈ C, λ1,2 = a± ib, a, b ∈ R

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 −1
1 2

)
, x(t = 0) =

(
1
0

)
.

Eigenvectors

λ1 = 2 + i

1 (A− λ1E)h1 = 0[(
2 −1
1 2

)
− (2 + i)

(
1 0
0 1

)]
h1 =

(
−i −1
1 −i

)
h1 =

(
0
0

)
2 h1

h1 =

(
0
1

)
+ i

(
1
0

)
= u+ iv

General solution
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Ex.4
case (ii), λ1,2 ∈ C, λ1,2 = a± ib, a, b ∈ R

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 −1
1 2

)
, x(t = 0) =

(
1
0

)
.

General solution

xG(t, C) = C1e
at(u cos bt− v sin bt) + C2e

at(v cos bt+ u sin bt)

1 λ1 = 2 + i→ a = <(λ1) = 2, b = =(λ1) = 1
2

h1 =

(
0
1

)
+ i

(
1
0

)
→ u = <(h1) =

(
0
1

)
v = =(h1) =

(
1
0

)
3 General solution
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Ex.4
case (ii), λ1,2 ∈ C, λ1,2 = a± ib, a, b ∈ R

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 −1
1 2

)
, x(t = 0) =

(
1
0

)
.

General solution

xG(t, C) = C1e
at(u cos bt− v sin bt) + C2e

at(v cos bt+ u sin bt)

1 λ1 = 2 + i→ a = <(λ1) = 2, b = =(λ1) = 1

2

h1 =

(
0
1

)
+ i

(
1
0

)
→ u = <(h1) =

(
0
1

)
v = =(h1) =

(
1
0

)
3 General solution
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Ex.4
case (ii), λ1,2 ∈ C, λ1,2 = a± ib, a, b ∈ R

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 −1
1 2

)
, x(t = 0) =

(
1
0

)
.

General solution

xG(t, C) = C1e
at(u cos bt− v sin bt) + C2e

at(v cos bt+ u sin bt)

1 λ1 = 2 + i→ a = <(λ1) = 2, b = =(λ1) = 1
2

h1 =

(
0
1

)
+ i

(
1
0

)
→ u = <(h1) =

(
0
1

)
v = =(h1) =

(
1
0

)

3 General solution
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Ex.4
case (ii), λ1,2 ∈ C, λ1,2 = a± ib, a, b ∈ R

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 −1
1 2

)
, x(t = 0) =

(
1
0

)
.

General solution

xG(t, C) = C1e
at(u cos bt− v sin bt) + C2e

at(v cos bt+ u sin bt)

1 λ1 = 2 + i→ a = <(λ1) = 2, b = =(λ1) = 1
2

h1 =

(
0
1

)
+ i

(
1
0

)
→ u = <(h1) =

(
0
1

)
v = =(h1) =

(
1
0

)
3 General solution

xG(t, C) = C1e
2t

[(
0
1

)
cos t−

(
1
0

)
sin t

]
+C2e

2t

[(
1
0

)
cos t+

(
0
1

)
sin t

]
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Ex.4
case (ii), λ1,2 ∈ C, λ1,2 = a± ib, a, b ∈ R

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 −1
1 2

)
, x(t = 0) =

(
1
0

)
.

General solution

xG(t, C) = C1e
at(u cos bt− v sin bt) + C2e

at(v cos bt+ u sin bt)

1 λ1 = 2 + i→ a = <(λ1) = 2, b = =(λ1) = 1
2

h1 =

(
0
1

)
+ i

(
1
0

)
→ u = <(h1) =

(
0
1

)
v = =(h1) =

(
1
0

)
3 General solution

xG(t, C) = C1e
2t

[(
0
1

)
cos t−

(
1
0

)
sin t

]
+C2e

2t

[(
1
0

)
cos t+

(
0
1

)
sin t

]
Particular solution

Martin Isoz, UCT Prague Math for ChemEng, SODE – Qualitative theory:Solving SODE



Ex.4
case (ii), λ1,2 ∈ C, λ1,2 = a± ib, a, b ∈ R

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 −1
1 2

)
, x(t = 0) =

(
1
0

)
.

Particular solution

xG(t, C) = C1e
at(u cos bt− v sin bt) + C2e

at(v cos bt+ u sin bt)

1 Substitute from the initial condition

xG(0, C) = C1 · 1 ·
[(

0
1

)
· 1
]
+ C2 · 1 ·

[(
1
0

)
· 1
]
=

(
1
0

)
2 Construct and solve set of LAE(

0 1
1 0

)
·
(
C1

C2

)
=

(
1
0

)
GE−→

(
C1

C2

)
=

(
0
1

)
3 Particular solution: xP (t) = e2t(cos t, sin t)T
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Ex.4
case (ii), λ1,2 ∈ C, λ1,2 = a± ib, a, b ∈ R

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 −1
1 2

)
, x(t = 0) =

(
1
0

)
.

Particular solution

xG(t, C) = C1e
at(u cos bt− v sin bt) + C2e

at(v cos bt+ u sin bt)

1 Substitute from the initial condition

xG(0, C) = C1 · 1 ·
[(

0
1

)
· 1
]
+ C2 · 1 ·

[(
1
0

)
· 1
]
=

(
1
0

)

2 Construct and solve set of LAE(
0 1
1 0

)
·
(
C1

C2

)
=

(
1
0

)
GE−→

(
C1

C2

)
=

(
0
1

)
3 Particular solution: xP (t) = e2t(cos t, sin t)T
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Ex.4
case (ii), λ1,2 ∈ C, λ1,2 = a± ib, a, b ∈ R

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 −1
1 2

)
, x(t = 0) =

(
1
0

)
.

Particular solution

xG(t, C) = C1e
at(u cos bt− v sin bt) + C2e

at(v cos bt+ u sin bt)

1 Substitute from the initial condition

xG(0, C) = C1 · 1 ·
[(

0
1

)
· 1
]
+ C2 · 1 ·

[(
1
0

)
· 1
]
=

(
1
0

)
2 Construct and solve set of LAE(

0 1
1 0

)
·
(
C1

C2

)
=

(
1
0

)
GE−→

(
C1

C2

)
=

(
0
1

)

3 Particular solution: xP (t) = e2t(cos t, sin t)T
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Ex.4
case (ii), λ1,2 ∈ C, λ1,2 = a± ib, a, b ∈ R

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
2 −1
1 2

)
, x(t = 0) =

(
1
0

)
.

Particular solution

xG(t, C) = C1e
at(u cos bt− v sin bt) + C2e

at(v cos bt+ u sin bt)

1 Substitute from the initial condition

xG(0, C) = C1 · 1 ·
[(

0
1

)
· 1
]
+ C2 · 1 ·

[(
1
0

)
· 1
]
=

(
1
0

)
2 Construct and solve set of LAE(

0 1
1 0

)
·
(
C1

C2

)
=

(
1
0

)
GE−→

(
C1

C2

)
=

(
0
1

)
3 Particular solution: xP (t) = e2t(cos t, sin t)T
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Ex.5
case (iii), λ1,2 ∈ R, λ1 = λ2 = λ0, Note: generalized eigenvector

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
3 1
−1 5

)
, x(t = 0) =

(
1
0

)
.
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Ex.5
case (iii), λ1,2 ∈ R, λ1 = λ2 = λ0, Note: generalized eigenvector

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
3 1
−1 5

)
, x(t = 0) =

(
1
0

)
.

Eigenvalues

1 ch. p.:

2 λ1 = λ2 = λ0 = 4

λ1,2 =
8±
√
64− 64

2
= 4
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Ex.5
case (iii), λ1,2 ∈ R, λ1 = λ2 = λ0, Note: generalized eigenvector

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
3 1
−1 5

)
, x(t = 0) =

(
1
0

)
.

Eigenvalues

1 ch. p.: λ2 − TrAλ+ detA = 0

2 λ1 = λ2 = λ0 = 4

λ1,2 =
8±
√
64− 64

2
= 4
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Ex.5
case (iii), λ1,2 ∈ R, λ1 = λ2 = λ0, Note: generalized eigenvector

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
3 1
−1 5

)
, x(t = 0) =

(
1
0

)
.

Eigenvalues

1 ch. p.: λ2 − TrAλ+ detA = 0 → λ2 − 8λ+ 16 = 0

2 λ1 = λ2 = λ0 = 4

λ1,2 =
8±
√
64− 64

2
= 4
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Ex.5
case (iii), λ1,2 ∈ R, λ1 = λ2 = λ0, Note: generalized eigenvector

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
3 1
−1 5

)
, x(t = 0) =

(
1
0

)
.

Eigenvalues

1 ch. p.: λ2 − TrAλ+ detA = 0 → λ2 − 8λ+ 16 = 0

2 λ1 = λ2 = λ0 = 4

λ1,2 =
8±
√
64− 64

2
= 4
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Ex.5
case (iii), λ1,2 ∈ R, λ1 = λ2 = λ0, Note: generalized eigenvector

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
3 1
−1 5

)
, x(t = 0) =

(
1
0

)
.

Eigenvalues

1 ch. p.: λ2 − TrAλ+ detA = 0 → λ2 − 8λ+ 16 = 0

2 λ1 = λ2 = λ0 = 4

λ1,2 =
8±
√
64− 64

2
= 4

Eigenvectors
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Ex.5
case (iii), λ1,2 ∈ R, λ1 = λ2 = λ0, Note: generalized eigenvector

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
3 1
−1 5

)
, x(t = 0) =

(
1
0

)
.

Eigenvectors

λ0 = 4

1 (A− λ0E)h = 0
2 (A− λ0E)k = h – generalized eigenvector
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Ex.5
case (iii), λ1,2 ∈ R, λ1 = λ2 = λ0, Note: generalized eigenvector

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
3 1
−1 5

)
, x(t = 0) =

(
1
0

)
.

Eigenvectors

λ0 = 4

1 (A− λ0E)h = 0

2 (A− λ0E)k = h – generalized eigenvector
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Ex.5
case (iii), λ1,2 ∈ R, λ1 = λ2 = λ0, Note: generalized eigenvector

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
3 1
−1 5

)
, x(t = 0) =

(
1
0

)
.

Eigenvectors

λ0 = 4

1 (A− λ0E)h = 0[(
3 1
−1 5

)
− 4

(
1 0
0 1

)]
h =

(
−1 1
−1 1

)
h =

(
0
0

)
=⇒ h =

(
1
1

)

2 (A− λ0E)k = h – generalized eigenvector
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Ex.5
case (iii), λ1,2 ∈ R, λ1 = λ2 = λ0, Note: generalized eigenvector

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
3 1
−1 5

)
, x(t = 0) =

(
1
0

)
.

Eigenvectors

λ0 = 4

1 (A− λ0E)h = 0[(
3 1
−1 5

)
− 4

(
1 0
0 1

)]
h =

(
−1 1
−1 1

)
h =

(
0
0

)
=⇒ h =

(
1
1

)
2 (A− λ0E)k = h – generalized eigenvector
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Ex.5
case (iii), λ1,2 ∈ R, λ1 = λ2 = λ0, Note: generalized eigenvector

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
3 1
−1 5

)
, x(t = 0) =

(
1
0

)
.

Eigenvectors

λ0 = 4

1 (A− λ0E)h = 0[(
3 1
−1 5

)
− 4

(
1 0
0 1

)]
h =

(
−1 1
−1 1

)
h =

(
0
0

)
=⇒ h =

(
1
1

)
2 (A− λ0E)k = h – generalized eigenvector(

−1 1
−1 1

)
k =

(
1
1

)
=⇒ k =

(
−1
0

)
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λ0t(ht+ k)

1 λ1 = λ2 = λ0 = 4

λ0 = 4, h =

(
1
1

)
, k =

(
−1
0

)
2 General solution

xG(t, C) = C1e
4t

(
1
1

)
+C2e

4t

[(
1
1

)
t+

(
−1
0

)]
= e4t

(
C1 + C2(t− 1)
C1 + C2t

)
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case (iii), λ1,2 ∈ R, λ1 = λ2 = λ0, Note: generalized eigenvector

Assignement

Solve the Cauchy problem,

x′ = Ax, A =

(
3 1
−1 5

)
, x(t = 0) =

(
1
0

)
.

Particular solution
xG(t, C) = C1e

λ0th+ C2e
λ0t(ht+ k)

1 Substitute from the initial condition

xG(0, C) = C1 · 1 ·
(
1
1

)
+ C2 · 1 ·

[(
1
1

)
· 0 +

(
−1
0

)]
=

(
1
0

)
2 Construct and solve set of LAE(

1 −1
1 0

)
·
(
C1

C2

)
=

(
1
0

)
GE−→

(
C1

C2

)
=

(
0
−1

)
3 Particular solution: xP (t) = e4t(1− t,−t)T
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Thank you for your
attention
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