
Implicit Function Theory Applications Part 0:
Background and What We Can Do With It

Dan Hughes
January 2011

Introduction
I’ve developed a couple of analytical solutions for transient, compressible fluid flows that
involve interactions with changes in the dimensions of the fluid container. The word pipe
will almost always be used interchangeably with container in these notes.

Implicit function theory is the most critical aspect of getting the analytical solutions. In
these notes I’ll summarize the basis for implicit function theory and give some illustrative
applications related to the analytical solutions.

Background
Let’s say we have two functions that provide relationships between the quantities
(Y1,Y2 )  as functions of (X1,X2 )  in the form

F(Y1,Y2;X1,X2 ) = 0 (1.1)
and
G(Y1,Y2;X1,X2 ) = 0 (1.2)

The notation is meant to convey the sense that both Ys are each a function of both Xs.

The derivatives of Eqs. (1.1) and (1.2) with respect to X1 , for example, are
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where each Y is taken to be a function of the Xs. The derivatives with respect to X2  are
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Equations (1.3) are two equations for the two unknowns, ∂Y1 ∂X1( )  and ∂Y2 ∂X1( )  and

likewise Eqs. (1.4) for ∂Y1 ∂X2( )  and ∂Y2 ∂X2( ) .

The determinant of the coefficients to the unknowns
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(1.5)

That is, the Jacobian which is usually written

J =
∂ F,G( )
∂ Y1,Y2( ) (1.6)

Applying the usual method for solving systems of linear equations, the solution for
∂Y1 ∂X1( ) , for example, is
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and the remaining three partial derivatives are solved by the same method. Recall that the
RHS column is substituted for the column in the determinant for which the solution is
sought.

As a general mnemonic device,
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where the notation has been expanded to include any number of equations and unknowns,
so long as these numbers are the same. The right-hand sides of Eqs. (1.3) and (1.4) are
substituted into the column associated with the derivative of interest. The usual solution
method for systems of algebraic equations.

Thermophysical Properties
The results in these notes can all be expressed in terms of some of the usual
thermophysical material properties. These properties are derivatives of the
thermodynamic state properties of the material, and thus they are second derivatives of
the fundamental relation for the material. These properties are summarized in the
following.

The specific heat at constant volume is
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∂u
∂T
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(1.9)

The specific heat at constant pressure is

Cp =
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⎠⎟ p
(1.10)

The specific heats are related by

Cp = Cv +
Tvβ 2

κ

which is especialy useful in the form

ρκCv = ρκCp −Tβ 2

(1.11)

The coefficient of isothermal compressibility is
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The coefficient of thermal expansion is
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And the coefficient of isentropic compressibility is
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Finally, the speed of sound is

Cs
2 =

Cp

Cvκρ
(1.15)

For an ideal gas the specific internal energy is

u = CvT (1.16)

the enthalpy is

h = CpT (1.17)

and

Cp = Cv + Rg (1.18)

The ratio of specific heats is usually denoted

γ =
Cp

Cv
(1.19)

Additionally, the above thermophysical properties are

κ = 1P (1.20)



for the isothermal compressibility,

β = 1T (1.21)

for the coefficient of thermal expansion,

σ s = γ
P
ρ

(1.22)

for the coefficient of isentropic compressibility, and the sound speed is

cs2 = γ RgT (1.23)

The Bridgman Method
P. W. Bridgman developed a simplified approach for expressing all derivatives of
thermodynamic-state properties in terms of thermophysical properties of materials. In my
opinion, the Wikipedia entry is correct and explains how Bridgman’s very
straightforward system works:
http://en.wikipedia.org/wiki/Bridgman's_thermodynamic_equations .

I have summarized results of his methodology in a nearby Table 1. Note that the entries
above the diagonal are simply the negative of the corresponding entries below the
diagonal; that is, aij = −aji . Additionally, one of these sets could be expressed in terms
of the density, ρ , and the other in terms of the specific volume, v  and reminding the
user about the sign change. The Table is very handy when dealing with several aspect of
equations of state.

I have uploaded the table as a PDF file and provided this URL link in my post:
http://edaniel.files.wordpress.com/2011/01/testbridgmantable.pdf . You’ll have to copy-
n-paste the link into your browser.

What can we do with it
So, now that we have the general idea, what can we do with it? One useful application is
associated with solution methods for finite-difference approximations to partial
differential equations as follows. For some solution methods, the FDEs for scalar
properties, mass and energy, for examples, are based on solutions for the products of
dependent variables and not an individual variable. This approach assists in preserving
the conserved-property, property-flux characteristics of conservation equations.

As an example, a FDE approximation to an energy equation might be written so that the
product ρe  is the solution variable. For the case of two-phase flows, typical solution



methods might solve for the product αρ  from a continuity equation and αρe  from an
energy equation; α  is the fraction of the control volume occupied by one of the phases
or fluids. For more general mixtures, the product-variable approach expands to include
several combinations of dependent variables; mixtures of gases and vapor along with
liquid.

If then an iterative method is applied to solving the non-linear FDEs at a time level, and it
is considered necessary that whenever possible analytical linearization of the EOS
properties should be used in the Jacobian matrices, implicit function theory can be used
to provide the EOS derivatives. The method provides also the various derivatives needed
for iterative solution for non-linear EOS.

A very simple illustrative application is given in the following paragraphs. Consider the
case in which the solution for the FDE approximations to the fundamental partial
differential equations ( PDEs ) gives the products of the density and total internal energy
content. That is

M = ρV
and
E = Mu

(1.24)

The intensive microscopic density is not generally available as a function of the extensive
macroscopic variables. That is, the density is generally available from an EOS like, for
example

ρ = ρ̂ P,T( ) (1.25)
or
ρ = ρ̂ P,h( ) (1.26)

and not in the form

ρ = ρ̂ M ,E( ) (1.27)

The specific example we consider here is for the pressure P and enthalpy  h, with respect
to the extensive macroscopic variables, M and E; that is,

P = P̂(M ,E)
and

h = ĥ M ,E( )
(1.28)

For this case, the latter can be written directly as



h = E
M

+ Pρ
(1.29)

Setting two constraint functions, one for the mass and the other for the energy content

M − ρ̂ P,h( )V = 0
and
E + PV −Mh = 0

(1.30)

provides two implicit functions for the derivatives of the intensive microscopic EOS
variables, P and h, with respect to the extensive macroscopic variables, M and E.

FM P,h;M ,E( ) = 0 (1.31)

and

FE P,h;M ,E( ) = 0 (1.32)

The Jacobian of Eq. (1.5) is
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(1.33)

Continuing the procedure outlined previously above gives
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Note that the last two derivatives can be obtained directly from

h = E
M + 1

M PV (1.35)

and the first two of Eqs. (1.34). Finally, using the well-known inter-relationship
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where C2
sf is the square of the fluid sound speed, gives

C2
sf

V
= 1V

Cp

κρCv
(1.37)

All the above results are easily verified by taking the fluid to be an ideal gas with
constant specific heats and the temperature, T in place of the enthalpy, h

h =CpT
and
E =MCvT

(1.38)

with

PV = MRgT (1.39)



The process above will give
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Equations (1.40) can be obtained directly from the appropriate form of Eq. (1.39) while
using Eq. (1.38). The fluid sound speed, Eq. (1.37) will be found to be

C2sf
V

= 1V γ RgT (1.41)

Note that all aspects of the procedure are valid for the case of the volume of the fluid
being a variable given by any function of any of the intensive or extensive fluid
properties.

( As an aside, given the EOS of Eq. (1.39) and the thermal equation of state, Eq. (1.38)
and allowing the volume, V, to be variable, and given no other additional information,
what are the valid values that the volume can take on? )

The complete results for this case are summarized in the nearby Table 2.
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Table 2.  Derivatives of equation of state properties with respect to mass and energy
content; rigid volume.

Note that there’s a vacant cell in that Table. I have not yet been successful in arriving at a
good reduction of the results in the cell above. Additionally, I have not reduced the
entries for the entropy.

Another Example
Let’s say we have a two-fluid model of a two-phase flow. Where two-fluid model means
there are model equations for mass, momentum, and energy for each phase or fluid in the
flow field. Basically, this allows each phase or fluid to have different flow speeds and
temperature; there can be both mechanical ( fluid velocity ) and thermal ( temperature
differences ) dis-equilibrium in the flow. An example would be the simultaneous flow of
subcooled liquid water along with, say, air at a higher temperature. Let’s also take the
case that the saturation state of the liquid water might be attained, so we can’t use the
pressure, P, and temperature, T, as independent variables for the EOS. Instead, we’ll use
the pressure, P,  and enthalpy, h,  as independent variables in the EOS. Any other two
thermodynamically independent properties could be used.

Typical solution variables for this case might be the products of the volume fraction and
density, and the volume fraction and density and specific internal energy; 

αρ (1.42)
and
αρu (1.43)

for examples, where u is the specific internal energy, ρ  is the density, and α is the
fraction of the control volume occupied by, usually, the less dense phase or fluid.

Numerical solution methods frequently require linearization of fluid thermodynamic state
properties in terms of the solution variables. For example, an approximation for a phase
or fluid temperature at the new-time level might be needed. This temperature is not
available as a function of the macroscopic properties above, but instead might be



available as a function of the pressure and enthalpy, or Implicit function theory can be
used to get these derivatives as outlined in the following paragraphs.

The implicit dependency is

 
ℑi P,α,hg,hl;Mg,Ml ,Eg,El( ) = 0 (i =1,…,4) (1.44)

Other combinations of the mass and energy content can be used. The mass of the mixture
and the energy of the mixture, for example, could be substituted for a phase or fluid
equation.

The four functions that can be used to obtain the derivatives are

Mgυ̂g P,hg( )−αV = 0

Mlυ̂l P,hl( ) − (1−α )V = 0
Eg +αPV −Mghg = 0

El + (1−α )PV −Mlhl = 0

(1.45)

where the functions have been multiplied through by the volume, V, as a small
generalization. Note that I have used subscripts ‘g’ and ‘l’ which usually stand for gas, or
vapor, and liquid, respectively. The void fraction, α , is associated with the phase or fluid
represented by ‘g’.

I get the determinant of the Jacobian

J =
∂ F1,F2,F3,F4,( )
∂ P,α,hg,hl( ) (1.46)

to be
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which can be written in several other forms. An instructive form is
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⎢
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⎢
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⎬
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⎭⎪
(1.48)

[ I have a career-long dis-function when signs are involved. Someone should verify this
result. The process is straightforward algebra, but tedious to the extreme. ]



The right-hand side of Eq. (1.48) can be viewed as an effective sound speed for the
mixture

V
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and the equation can be written

J = − V
C2
seff

(1.50)

The derivative of the pressure with respect to the mass content of phase or fluid Mg , as
noted previously above, is
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and likewise for all the other partial derivatives.

The results from the procedure for the derivatives of the pressure and volume fraction are
summarized in the nearby Table 3. Note that subscripts ‘1’ and ‘2’ are used in place of
‘g’ and ‘l’, respectively.
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Table 3.  Derivatives of pressure and void fraction with respect to mass and energy
content; two-region non-equilibrium case.

The partial derivatives of other intensive thermodynamic state properties can be obtained
by application of the procedure, or as follows. The temperature of phase or fluid ‘g’ for
example is

Tg = T̂g(P,hg ) (1.52)

where

hg =
Eg
Mg

+αPV (1.53)

For example, one of the derivatives of the temperature is
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(1.54)

where
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and
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(1.56)

And, of course, all other derivative of the enthalpy can be obtained by the same way. As
you can see, the number of terms in the equations can get to be frighteningly large.

And so it goes.

If the mass, M, and energy content, E, are the chosen dependent variables in the model
equation system, and the thermodynamic state properties are available as function of the
density, ρ , and specific internal energy, u , these can be directly determined from the
solution variables by use of

ρ = MV (1.57)

and

u = E
M (1.58)

The EOS for an ideal gas, as discussed previously above, is an example. And at the same
time the simple form of the ideal gas EOS allows for writing the equation directly in
terms of mass and energy content.

Single-Phase Fluid States
For the case of single-phase fluids, again with pressure and enthalpy as independent
thermodynamic variables for the EOS, we write

Mυ̂(P,h)−V = 0
and
E + PV −Mh = 0

(1.59)

If anyone is interested in how to handle saturation states just let me know and I’ll whip
them out.

Independent variables pressure and temperature can also be used. The functions the are



Mυ̂(P,T )−V = o
and
E −Mû(P,T ) = 0

(1.60)

Application of the procedure to these is left as an exercise for the interested reader.

This ends the discussions about using implicit function theory to obtain partial derivatives
of intensive thermodynamic state properties with respect to macroscopic extensive
properties.

We could equally use the following formulation.

υ̂(P,T )− V
M

= 0

and
E + PV −Mĥ(P,T ) = 0

(1.61)

The determinant is then

J = MCvκυ (1.62)

and
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∂M

⎛
⎝⎜

⎞
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MCvκ

Cp − hβ( )
∂P
∂E

⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
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υβT − hκ( )
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∂T
∂E

⎛
⎝⎜

⎞
⎠⎟ M

= 1
MCv

(1.63)

All other partial derivatives are easily obtained.



EOS Solution Methods
Another application of implicit function theory is to numerical solution methods for non-
linear equation of state formulations; that includes almost all EOSs of interest. Let’s say
at the end of a time step the EOS has to be updated to get the new-time-level values for
the thermodynamic-state properties. The iterative Newton-Raphson method is a typical
numerical solution method for non-linear equations. To apply the method to an example
already considered previously above, take the case of Eqs. (1.59) and now we need to
find the pressure and enthalpy at the new-time level, (n+1). As a first step, we can get the
first guess by use of, for the pressure

 

Pn+1 = Pn + ∂P
∂M

⎛

⎝⎜
⎞

⎠⎟

n

E
ΔM( )n+1 + ∂P

∂E
⎛
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⎞
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n

M
ΔE( )n+1 (1.64)

where the delta-mass and energy are the change in the mass and energy content over the
just-finished time advancement. All the variables can be extrapolated this way. And can
be applied to whatever the combination of fluid-flow model and EOS and solution
variables.

Then, applying the usual linearization procedure to Eqs. (1.59) gives
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∂P
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∂T
⎛

⎝⎜
⎞

⎠⎟ P
ΔT( )k+1 = −Fk

1 P,T( )
and

−M ∂û
∂P

⎛

⎝⎜
⎞

⎠⎟ T
ΔP( )k+1 −M ∂û

∂T
⎛

⎝⎜
⎞

⎠⎟ P
ΔT( )k+1 = −Fk

2 P,T( )

(1.65)

where the extrapolated values are used for the initial evaluation of the functions. The
derivatives of the thermodynamic-state properties can be expressed in terms of the state
and thermo-physical properties for the material.

Note that extrapolations like Eq. (1.64) can be used to approximate the change in solution
variables expected to occur over a time step. In this way, for example, the effects of
changes in the thermodynamic state of the fluid can be factored into the numerical
solution method applied to the basic fluid-flow equations.

Implicit Coupling of Conduction and Convection Energy Exchange
An example of application of implicit function theory methodology to numerical solution
methods is developed in the following paragraphs. Consider the lumped-parameter
modeling of energy exchange between a solid material and a fluid. For the example,
spatial variations will be neglected and only changes with time will be considered. An
energy equation balance for the fluid is



d
dt Ef = hcAw Tw −Tf( ) (1.66)

and for the solid

MmCpm
d
dt Tm = hcAw Tf −Tm( ) (1.67)

where we’ll take the energy content of the fluid to be

Ef = ρh (1.68)

which will be the solution variable. The EOS for the fluid will be assumed to be available
with the pressure and enthalpy as independent thermodynamic properties. But for this
example the dependency on pressure will be neglected. Then we can write

Tf = T̂ f (h) (1.69)

Straightforward discrete approximations for Eqs. (1.66) and (1.67) are

ΔEf( )n+1
= Δt( )hcAw T n+1

m −T n+1
f

⎛
⎝

⎞
⎠

and

(ΔTm )n+1 = Δt( ) hcAwMmCpm
T n+1
f −T

n+1
m

⎛
⎝⎜

⎞
⎠⎟

which can be written

1+ Ĥcm( )(ΔTm)n+1 − Ĥcm(ΔTf )n+1 = − Δt( )(RHSTm )n

(1.70)

Expanding the fluid temperature in a Taylor series gives

 

Tf
n+1 = Tf

n +
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∂Ef
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⎟⎟

n

ΔEf( )n+1 + (1.71)

and the first of Eqs. (1.70) becomes
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⎥
ΔEf
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n+1
− Δt( )hcAw ΔTm( )n+1

= − Δt( ) RHSEf( )n
(1.72)

where the derivative of the fluid temperature is obtained by use of implicit function
theory as developed above in these notes.

Putting the fluid temperature expansion of Eq. (1.71) into the third of Eqs. (1.70) will
give an equation for the change in the metal temperature in terms of the change in the
fluid energy content. That equation is then put into Eq. (1.72) to get an equation for the
change in the fluid energy. That is, the metal temperature has been eliminated from the
fluid energy equation and the fluid-metal energy exchange is handled at the new-time
level in both equations.

This approach can be generalized to various geometrical configurations of fluid energy
equations and conduction heat transfer in solid materials. The parabolic nature of the heat
conduction equation presents some interesting problems relative to treatment of boundary
conditions; the existence of all boundaries is known to a given boundary all time.

Variable Fluid Control Volume
Let’s next consider a case for which the volume is not constant but instead is a function
of the pressure difference across the container walls. Again we’ll use a straight constant-
diameter pipe for convenience in word processing. At least two configurations are of
interest; the first being a constant pressure condition outside the pipe and the second
being a variable pressure on the outside.

The coupling between the fluid and the pipe wall is contained in the wall function

V t( ) =V 0( ) + Kwp P t( ) − P 0( )⎡⎣ ⎤⎦ (1.73)

where Kwp  represents the geometric details of the pipe wall and the pipe support method.
For the case of pure radial deformation of the pipe wall with rigid constraints in the
lateral direction, one form is

Kwp =
π
4 D

2 Δz( ) 1− µ2
E

⎛

⎝
⎜

⎞

⎠
⎟
D
t

⎛
⎝⎜

⎞
⎠⎟

(1.74)

D = pipe diameter
Δz = pipe length
µ = one of those strain ratios



E = modulus of elasticity for the pipe metal
t = pipe wall thickness.

If the pressure state on the other side of the pipe wall can change, the wall function
becomes

Vk t( ) =Vk 0( ) + Kwp Pk t( )− Pk 0( )⎡⎣ ⎤⎦ − Pz t( )− Pz 0( )⎡⎣ ⎤⎦{ } (1.75)

for volume ‘k’, and

Vz t( ) =Vz 0( ) + Kwp Pz t( )− Pz 0( )⎡⎣ ⎤⎦ − Pz t( )− Pz 0( )⎡⎣ ⎤⎦{ } (1.76)

for volume ‘z’, where the subscripts ‘k’ and ‘z’ identify the two sides of the wall. We’ll
consider the first case in detail in the following paragraphs.

Because we have used pressure and enthalpy as independent variables for microscopic
thermodynamic state properties, we’ll use them again. The mass and energy functions to
be used with implicit function theory, Eqs. (1.59), are repeated here

FM P,h;M ,E( ) = Mυ̂ P,h( )−V P( ) = 0
and
FE P,h :M ,E( ) = E + PV P( )−Mh = 0

(1.77)

where the volume is shown to be a function of the internal fluid pressure for the volume.
The derivatives that go into the Jacobian are
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∂FE
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∂FE
∂h

= −M

(1.78)

and the determinant of the Jacobian is

D = V
2

Csf
2 + KwpM 1− Pυβ

Cp

⎛

⎝
⎜

⎞

⎠
⎟ (1.79)



where Kwp  is the change in the volume enclosed by the wall as the internal pressure
changes as given by Eq. (1.74).

Equation (1.79) can be written

V 2

Ceff
2 = V

2

Csf
2 + KwpM 1− Pυβ

Cp

⎛

⎝
⎜

⎞

⎠
⎟ (1.80)

an effective pressure-wave propagation speed for the fluid-wall combination.

Proceeding as above for the single-phase fluid case, the remainder of the derivatives of
the intensive thermodynamic properties with respect to the macro extensive properties are
summarized in the nearby Table 4.

with respect toDerivative
of M E

P
Ceff
2

V
1− hβ

Cp

⎛

⎝⎜
⎞

⎠⎟
Ceff
2

V
β
Cp

υ −
V
M 2 = −

υ
M

0

1
Cp

βT −1( ) ∂P
∂M

⎛
⎝⎜

⎞
⎠⎟ E

+
1
Cp

∂h
∂M

⎛
⎝⎜

⎞
⎠⎟ E

υ
Cp

βT −1( ) ∂P
∂E

⎛
⎝⎜

⎞
⎠⎟ M

+
1
Cp

∂h
∂E

⎛
⎝⎜

⎞
⎠⎟ M

T
1

MCp

[1+ Ceff
2 Tβ 2

Cp

]

u −
E
M 2 = −

u
M

1
M



h −
h
M

+
Ceff
2

M
1− hβ /Cp( ) 1

M
+
Ceff
2

M
β
Cp

s −
υ
T

∂P
∂M

⎛
⎝⎜

⎞
⎠⎟ E

+
1
T

∂h
∂M

⎛
⎝⎜

⎞
⎠⎟ E

= −
h
MT

−
υ
T

∂P
∂E

⎛
⎝⎜

⎞
⎠⎟ M

+
1
T

∂h
∂E

⎛
⎝⎜

⎞
⎠⎟ M

=
1
MT

D
M 2υ 2

Csf
2 + MKw 1− Pυβ

Cp

⎛

⎝⎜
⎞

⎠⎟
=

V
Ceff

⎛

⎝⎜
⎞

⎠⎟

2

Table 4.  Derivatives of equation of state properties with respect to mass and energy
content; flexible volume.

Note that there’s a vacant cell in that Table. I have not yet been successful in arriving at a
good reduction of the results in the cell above. Additionally, I have not reduced the
entries for the entropy.

The analysis method can accommodate any description of the fluid flow. For the two-
phase or -fluid, approach as given by Eqs. (1.44), the only change is that the volume is a
function of the pressure. The additional equation required by the additional unknown, just
as directly above, is the wall function.

Two-Sided Wall
If the pressure state on the other side of the pipe wall can change, the wall function is Eq.
(1.75) and the volume occupied by the fluid is a function of the pressure on both sides of
the wall. The fluid state in each volume is a function of the fluid state of both the
volumes. The general form of the constraint functions is now

 
ℑi Pk ,hk ,Pz,hz;Mk ,Ek ,Mz,Ez( ) = 0 (i =1,…,4) (1.81)

The explicit form of these is easily obtained directly from Eqs. (1.77). An example is

FMk Pk,hk ,Pz,hz;Mk,Ek ,Mz,Ez( ) =Mkυ̂k Pk,hk( )−Vk Pk ,Pz( ) = 0 (1.82)

for mass content in volume ‘k’, and

FEz Pk ,hk ,Pz,hz;Mk ,Ek ,Mz,Ez( ) = Ez + PzV Pk ,Pz( )−Mzhz = 0 (1.83)

for energy content for volume ‘z’. And etc.



The wall function of Eq. (1.76)  will give four derivatives of the volumes with respect to
the pressure, noting that each volume is a function of both pressures.  These derivatives
are

′Vkk =
∂Vk
∂Pk

, ′Vkz =
∂Vk
∂Pz

(1.84)

for volume K, and

′Vzk =
∂Vz
∂Pk

, ′Vzz =
∂Vz
∂Pz

(1.85)

for volume Z.

Note that the derivatives satisfy the following conditions

∂Vk
∂Pk

= − ∂Vz
∂Pk

∂Vk
∂Pz

= − ∂Vz
∂Pk

(1.86)

and that all these derivatives reduce to either +Kwp or −Kwp .

By this point, everyone should know the drill for applying implicit function theory. I’ll
just note that we’ll need 16 derivatives for each matrix and that that is lots o’ algebra;
straightforward but tedious algebra.

The results are summarized in a nearby Table 5 for a limited number of the derivatives.
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Table 5.  Derivatives of equation of state properties with respect to mass and energy
content for two flexible wall case.

Maybe someday I’ll get around to doing all the derivatives for all the models an all
dependent variables for numerical solution methods and all the different forms of the
constraint functions. By the latter I mean that the mass and energy functions can be
written as

FMk = υ̂k Pk ,hk( )− 1
Mk

Vk Pk ,Pz( )
FEk = Mkhk − PkVk Pk ,Pz( )− Ek
FMz =υz Pz,hz( )− 1

Mz
Vz Pk ,Pz( )

FEz = Mzhz − PzVz Pk ,Pz( )− Ez

(1.87)

Finally, note in passing that a two-fluid formulation will require four functions for each
coupled volumes and that leads to 64 entries in all matrices.  Those are some bad
matrices.

Conclusions
Implicit function theory is your friend.




