THE IMPLICIT FUNCTION THEOREM

1. A SIMPLE VERSION OF THE IMPLICIT FUNCTION THEOREM
1.1. Statement of the theorem.

Theorem 1 (Simple Implicit Function Theorem). Suppose that ¢ is a real-valued functions defined on a domain

D and continuously differentiable on an open set D' C D C R", (29, 29, ..., 2%) € D!, and
¢ (2}, 23, ..., an) = 0 @
Further suppose that
opx?, 29, ..., 20
Py, T3 ) £ 0 @)
8561
Then there exists a neighborhood Vs(z39, z3, ..., 29) C D', an open set W C R! containing x and a real valued

function 1y : V. — W, continuously differentiable on V, such that

.CC(l) = Y (xg, :cg, cey x%) (3)
¢(1/)1(x8, xg, cee x%),xg, xg, e x?l) =0
Furthermore fork=2,...,n,
Op(r (23, 25, ..., ) 2y, @5, ..., ) 99(x°)
(2§, 2, ..., ah) = T _ Tom @)
8CCk - 3¢(¢1(Ig,xg,...,x%),xg,xg,...,xg) - O¢(29)
Bacl axl
We can prove this last statement as follows.
Define g:V — R" as
Pi(xy, ..., )
9
0
g(:cg, :cg, ey x?l) = T3 (5)
s,

Then (pog)(zy, ..., 2%) = Oforall (29, ..., 22) € V. Thus by the chain rule
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2 THE IMPLICIT FUNCTION THEOREM

D(¢og)(z3, ..., an) = Do (g(x3, ..., ap)) Dylay, ... ap) =0
= D¢ (2},23, ..., 25) Dg(ay, ... ap) =0
'r? 1/’1@8, ) x?l)
9 x9
— Dol | D a5 —0
x'g x'g (6)
oY oY o1
Oz Oxs Oy
1 0o ... 0
96 ¢ 99 e —
= [22e, 2|0 1 0= 0 .. 0
0 0 1
Forany k=2,3,...,n, we then have
Op(x9, 29, ..., 20) Oy (29, ..., 20) 9p(x,29,...,22)
+ =0
8$1 8$k 8xk
96 (x.a9.....a0) @)
81/11(%8,,:691) . laik
Oy, C 0g(aRedah)
oz
We can, of course, solve for any other z, = v (29,29, ..., 2)_,, 20 ,,...,2Y%), as a function of the other
X’s rather than x; as a function of (29, 2. ..,29).
1.2. Examples.
1.2.1. Production function. Consider a production function given by
y=flzy, x2 ..., Tn) ®)
Write this equation implicitly as
(b(xl,CCQ,...,.In,y):f(xl,CCQ...,CCn)—y:O (9)

where ¢ is now a function of n+1 variables instead of n variables. Assume that ¢ is continuously differ-
entiable and the Jacobian matrix has rank 1. i.e.,

0o af )
—_— = = =1,2,... 10
8;1:‘] 8;1:‘] ;é O’ .] ) ) ) n ( )
Given that the implicit function theorem holds, we can solve equation 9 for x;, as a function of y and the
other x’s i.e.

2y = YT, Ty ooy Tho1, Thtt, -5 Y) (11)
Thus it will be true that

Oy, T1, To, ..oy Th1, Thy Thtls -+, Tn) = 0 (12)
or that
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y = f(x1, o, ooy Th—1, Thy Tht1s -y Tn) (13)
Differentiating the identity in equation 13 with respect to x; will give
of of Oz
-9 Y)Yk 14
0 8$j * 8xk 8xj ( )
or
2Tk _ %% _ RTS = MRS (15)
0x; of
J Oz
Or we can obtain this directly as
8¢(ya L1, T2y vy Th—1, U)ka Tr+1y - - .’,En) % _ _8¢(ya L1, T2y ooy Th—1, U)ka LTh41y - - .’,En)
8CCk 8CCj 8£Cj
96 Oxp _ _ 09
8CCk 8£Cj N 8£Cj (16)
_ar
= % = ;;.xj = MRS
xj a_xk
Consider the specific example
' = f(xy, 20) = 22 — 2w129 + 1O

To find the partial derivative of x, with respect to x; we find the two partials of f as follows

of
Jry Er
A =~ 57
8561 3_302

3
2z — 222 + x5
3x1:c§ — 221

209 — 211 — x%

3x1:c§ — 221

1.2.2. Utility function.
u’ = u(zy, z2)

To find the partial derivative of x, with respect to x; we find the two partials of U as follows

du

Jry e
T o

8561 3_302

1.2.3. Another utility function. Consider a utility function given by

IS
Il
8
e
8
N ol
8
W o=

This can be written implicitly as
111
flu, 1, 9, z3) = u — xf x5 2§ =0
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Now consider some of the partial derivatives arising from this implicit function. First consider the mar-
ginal rate of substitution of x; for x,

—of
8561 - 0 xo
_— = D7
8562 E
NP I
_(_§)x1 Ty " Xy

—of
8562 - dxs
_— = 9 f
8563 Fas

3
- 2 T3
Now consider the marginal utility of x,
- f
8’UJ _ 0 o
0 xo 9f
u
12 1
—(—%)xf Ty T wy
N 1
1 + _2 1
—— I 03 8
3 1 2 3

2. THE GENERAL IMPLICIT FUNCTION THEOREM WITH P INDEPENDENT VARIABLES AND M IMPLICIT
EQUATIONS

2.1. Motivation for implicit function theorem. We are often interested in solving implicit systems of equa-
tions for m variables, say xi, X, ..., Xy, in terms of m+p variables where there are a minimum of m equa-
tions in the system. We typically label the variables X;+1, Xm+2, - - -, Xm+p, Y1, V2, - - ., Yp. We are frequently
interested in the derivatives g;ﬁj where it is implicit that all other x;, and all y, are held constant. The con-
ditions guaranteeing that we can solve for m of the variables in terms of p variables along with a formula
for computing derivatives are given by the implicit function theorem.

One motivation for the implicit function theorem is that we can eliminate m variables from a constrained
optimization problem using the constraint equations. In this way the constrained problem is converted to
an unconstrained problem and we can use the results on unconstrained problems to determine a solution.

2.2. Description of a system of equations. Suppose that we have m equations depending on m + p vari-
ables (parameters) written in implicit form as follows
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(bl('rl;'rQ;"'axmaylayQa"'ay;D) =0
¢2(:C1;:C2;"'axmaylayQa"'ay;D) =0
17)
(bm('rl;x%"'axmaylayQa"'ay;D) =0
For example with m = 2 and p = 3, we might have
(bl ('rla €2, p, Wi, ’LUQ) = (04) pro»ﬁ 'rg'Q - w1 = 0 (18)
92 (21, 22, P, W, wa) = (0.2) pa}tay " — wp =0

where p, w; and w, are the “independent” variables y, y2, and ys.

2.3. Jacobian matrix of the system. The Jacobian matrix of the system in 17 is defined as matrix of first
partials as follows

9 ¢1 0¢1 0 ¢1
Oxq O xo O T
9 P2 0 ¢ 0 ¢2
J = PR 8?62 O Tom (19)
Obm  Odm 0 dm
Oz Oxo O

This matrix will be of rank m if its determinant is not zero.

2.4. Statement of implicit function theorem.

Theorem 2 (Implicit Function Theorem). Suppose that ¢; are real-valued functions defined on a domain D and
continuously differentiable on an open set D' C D C R™*P, where p > 0 and

(bl('r?a .Ig,...,x?n, y?aygaayg) =0
¢2('r?5 .Ig,...,x?n, y?aygaayg) =0
C =0 (20)
(bm('r?a 'rga"'axgna y(ljaygaayg) =0
(«%,y°) € D,

We often write equation 20 as follows

(2%, %) =0, i=1,2,...,m,and (2", °) € D' (21)

Assume the Jacobian matrix [%ﬂ;yo)} has rank m. Then there exists a neighborhood Ns(x°, y°) C D', an open

set D> C RP containing yo and real valued functions 1y, k=1,2, ..., m, continuously differentiable on D?, such that
the following conditions are satisfied:
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Ty = 1(90)
Lo = 2(90)
x?n :1/)m(y0)

For every y € D?, we have

(bl(wl(y)a wQ(y)a ceey ¢M(y)a Y1, Y2, - oy yp) = Oa = 15 25 )

or

oi(W(y),y) =0, i=1,2,...,m.

(22)

(23)

We also have that for all (x,y) € Ns(x®, y°), the Jacobian matrix [%ﬁ]y)} has rank m. Furthermore for y € D?,

the partial derivatives of 1)(y) are the solutions of the set of linear equations

zm: Ip1(v(y),y) rly) =061 (¥(y), )

= Oy, y; dy;
i p2(V(y),y) OUr(y)  —0d2(¥(y),y)
= Oy, dy; Ay,

zm: Ipm (W), y) Ikly)  —0¢m(¥(y), )

= Oxy, dy; dy;

We can write equation 24 in the following alternative manner

i 061 (V) y) Only) _ —00:(¥(y)y) . _

= , 2, ...,m
= Oz, 0y, Jy;
or perhaps most usefully as the following matrix equation

e e e 3151(9) 78¢1£§1p(y),y)

2 2 O Yj Yi

02 003 05y | | ovaly) —062(6(y).y)

axl 8x2 me ay]‘ o ay]‘

Oém Obm Oom | | 0¢m 00 (V(1).

S e o %TJ(}J) W

This of course implies

Q
<
=
—
<
=
3
=
Q
=

1 17 [ 2010w)y)

Jy; d ] Jy;

03 (y) bds 665 06 962(¥(y).v)
0y, . Oy Oxa ox Jy;

O (y) Odm  Odm Odm Odm (P () ,y)

Q

<

S
Q|
8
=
Q|
8
M
Q|
8
3

0y

(24)

(25)

(26)

27)
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We can expand equation 27 to cover the derivatives with respect to the other y, by expanding the matrix equation

Y1 (y) 91 (y) 91 (y) 9 ¢ 9 ¢ d¢; 71 [ 9¢1(¥(w).y) 961 (¥ (y),y) 9¢1 (¥ (y).y)
Oy Oy3 Oyp D, o T Dam Oy O0ya Oy
92 (y) 92 (y) 92 (y) 0 ¢2 93 . 0 ¢2 092 (¥ (v),y) 002 (¥(y).y) 062 (%(y).v)
Oy1 Jy2 Oyp . Oz E O Tm Oy1 Jy2 Oyp
Law;w) O (y) 2nw) | |20m 00w ... Obu | | 20wy 20w D (1) v)
Oy1 Jy2 Oyp dz1 EER dzm Oy1 Jy2 Oyp
(28)

2.5. Some intuition for derivatives computed using the implicit function theorem. To see the intuition
of equation 24, take the total derivative of ¢; in equation 23 with respect to y; as follows

(bl(wl(y)a U)Q(y)a awm(y)v y) =0

d¢; I n 0¢i 0y~ 0¢i OYm | 09 ~ 0 (29)
Oy dy; Oy Oy OPm dy; Dy
and then move gij to the right hand side of the equation. Then perform a similar task for the other
equations to obtain m equations in the m partial derivatives, gZ] = gi
For the case of only one implicit equation 24 reduces to
— 00(W(y), y) nly) _ _ 96(¥(y), v)
> = SR Y (30)
Oz, 0y, Jy;

k=1
If there is only one equation, we can solve for only one of the x variables in terms of the other x variables
and the p y variables and obtain only one implicit derivative.

(YY), y) OYw(y) _ _ 9¢(¥(Y), y) (31)
Oz, y; y;
which can be rewritten as
0¥ (y), v)
dy; o 8¢(lg(y)7y)

This is more or less the same as equation 4.

If there are only two variables, x; and x2 where x5 is now like y;, we obtain

0p(Y1(z2), x2) OY1(z2) 0 (Yi(x2), 22)

8:61 8:62 8:62
S (33)
L Oz 9a(a2) _ —%j)z)
8502 N 8562 - M
1

which is like the example in section 1.2.1 where ¢ takes the place of f.

2.6. Examples.
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2.6.1. One implicit equation with three variables.
¢, 73, 4°) = 0

(34)

The implicit function theorem says that we can solve equation 34 for x{ as a function of xj and y?, i.e.,

'r? - U)l('rga yO)
and that

(b(wl('rQa y)a €2, y) =0
The theorem then says that

8¢(¢1($2, y)a T2, y) % _ —8¢(¢1($2, y)a T2, y)

8':Cl 8502 8562
8¢(¢1($2, y)a T2, y) 8:61(:625 y) _ 8¢(¢1($2, y)a T2, y)
= - —

Oxq 0z 0xa

2] T2,Y), T2,
0z1(z2, y) - d(( azxg) 2,Y)
Oxo - 3¢(¢1(I8277J)7I27y)

1

2.6.2. Production function example.
¢}, 23, 9°) = 0

yO - f(ZC?, Zg)

The theorem says that we can solve the equation for x§.

Il
o

'r? - 1/)1 ('rga yO)
It is also true that

d(V1(x2, y), T2, y) =
y — .f(d)l('r% y)axQ) =

Now compute the relevant derivatives

8¢(1/)1(£C2, y)a L2, y) _ 8.f(¢1 (an y)axQ)

o1 01
(Y1 (22, y), w2, y) _  Of (i (2, y), 22)
0xa O
The theorem then says that
O, (23, y) D2

01 (22, y), 2, y)

Oxq

01 (x2,y), 22, y)
8x2 [ ‘|

Oxo

_ Of(hi(za,y),x0)

Oxq

[ _ Of(hi(za,y),@2) ‘|

Of (W1 (x2,y),22)

Oxo

Of (W1 (22, y),x2)

Oxq

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)
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9

2.7. General example with two equations and three variables. Consider the following system of equa-

tions

p1(x1, T2, y) =321 + 202 + 4y = 0

b2 (21, T2, y) =411 + 22 + Yy =0

091 09
gl -]
2 CO@2
o1 Oos 1

The Jacobian is given by

(43)

(44)

We can solve system 43 for x; and x, as functions of y. Move y to the right hand side in each equation.

31 + 2z9 = —4y
dx1 + 2 = —y
Now solve equation 45b for x,

To = —y —4x;

Substitute the solution to equation 46 into equation 45a and simplify

3x1 4+ 2(—y —4xq) = —4y
= 3r1 — 2y — 81 = —4y
= —5561 = —2y

= T = ;y = YP1(y)

Substitute the solution to equation 47 into equation 46 and simplify

2
ey

5
= T *—§ —§
2 = 5y 59
13
:—gy:#&(y)

If we substitute these expressions for x; and x» into equation 43 we obtain

¢1(§y,—15—3y,y>) —3[24 + 2[—?4 + 4y
6 26 20
=Y T FY + Y
20 20
= — gy + gy =0
and

(45a)
(45b)

(46)

(47)

(48)

(49)
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2 13 2 13
¢2(gy,—gy,y>) —4[54 + [—gy} +y

8 13 5
_8, 1B, .3 (50)
59 T 5V T Y
13 13
=5y - zy=0
Furthermore
oi _2
oy 5
’ (51)
I _ 13
oy 5

We can solve for these partial derivatives using equation 24 as follows

1 Oy n Op1 Oy —01

71 it e 2
Oxry Oy Oxo Oy Ay (52a)
Opa Y1 Og2 Oha  —0¢o
oxry Oy + dry Oy Oy (52b)
Now substitute in the derivatives of ¢; and ¢, with respect to x;, x2, and y.
o1 Opa
3 9y + 2 oy —4 (53a)
o1 Oho
4L 122 =
oy + oy (53b)
. 0o
Solve equation 53b for 8—”;
O On
22— 42t 4
oy oy (54)
Now substitute the answer from equation 54 into equation 53a
oY On
Lyo( 14—t ) =14
’ oy ( Ay )
= 3 o -2 - 8% = -4
Ay Ay
o (55)
1
_5 1 — _9
= =9 By
ov 2
dy 5

If we substitute equation 55 into equation 54 we obtain
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O _ o
oy — T4,
o 2
92 _ 4 _ 2 56
:>8y 1 4(5> (56)
_>_8_ 13
5 5 5

We could also do this by inverting the matrix.

2.7.1. Profit maximization example 1. Consider the system in equation 18. We can solve this system of m
implicit equations for all m of the x variables as functions of the p independent (y) variables. Specifically,
we can solve the two equations for x; and x; as functions of p, wi, and wo, i.e., x; = 91 (p, w1, w2 ) and x»

= 1Yo(p, wi, wa ). We can also find %—?and 369;2 , that is (%—”;) , from the following two equations derived
from equation 18 which is repeated here.
¢1 (21, w2, p, w1, wo) = (0.4) pa7"Caf? — wy =0
b2 (21, T2, P, w1, wo) = (0.2) pal* x;o,s — wy =0
~16_ 027 971 —0.6_—087 972 —0.6 0.2
[(—024)pa; 0292 ] —— + [(0.08)pa;?Ca; O] ——= = — (0.4) 27 2
Op op (57)
_06 — oz _ oz _
[(0.08)pa; %0 z;%] 8—1 + [(=0.16)paftay '?] 3—2 = — (0.2) 294 2, 08
p p
We can write this in matrix form as
(—0.24)pxy %292 (0.08)pa;®Cay O %—x; | = (04) 2y 06 292 (59)
_ _ _ oz - _
(0.08)px; %020 (—0.16)paftay *8 Era —(0.2) 294 2508
2.7.2. Profit maximization example 2. Let the production function for a firm by given by
y = lda; + llag — 23 — 23 (59)
Profit for the firm is given by
T =Py — W11 — W2I2 (60)
=p(lday + 1lzy — 22 — 23) — wia; — wo ko
The first order conditions for profit maximization imply that
m = l1ldpx; + 1llpxs — px% — px% — W1 T — W2T2
orn
8—m2¢1 =1dp — 2pxry — w1 =0 61)
or
8—x2:¢1:11p—2p$2—w2:0

We can solve the first equation for x; as follows
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0
an =14p — 2px; — w1 = 0
8561
= 2px1=14p — wy
14p —
g P wm
2p
w1
frmnd 7 _—
2p
In a similar manner we can find x, from the second equation
0
an =1lp — 2pxy — wy = 0
8562
= 2pa2=11p — wy
11p —
Ly g, = 1P = w2
2p
w2
=55 - —
2p
We can find the derivatives of x; and x, with respect to p, w; and w directly as follows:
1 _
r1 = 7 — 5 w1 p !

1
Tro =55 — —wgpf1

2
8$1 7_1w _9
—8p =3 1p
8$1 1 1
= — 5P
8101 2
8$1 :O
8102
8$2 7_1w _9
—8p =3 2P
8$2 1 1
= — 5P
8102 2
8$2 :O
8102

(62)

(63)

(64)

We can also find these derivatives using the implicit function theorem. The two implicit equations are

¢1(x1, T2, p, wi, we) =14p — 2pr1 — w1 =

¢o2(x1, 22 p, w1, w2) =11p — 2pxs — wo = 0

(65)

First we check the Jacobian of the system. It is obtained by differentiating ¢; and ¢, with respect to x;

and x» as follows

<
Il
L — |
ST
TR
©
S

o
ozl - [ )
Baci 8_962 0 —2p

(66)

The determinant is 4p? which is positive. Now we have two equations we can solve using the implicit

function theorem. The theorem says
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zm: 9¢i(9 (y), y) 9ge(y) _  0%i(¥(y), v)

= Oy, 0y, 0y,

For the case of two equations we obtain

d¢1 0xy + d¢1 Oxa _ d $1
dx1 Op dxg Op dp
¢ Ox1 + 0 ¢ 012 _ 0 ¢z
Oxy Jp Oxo Op ap
We can write this in matrix form as follows
l% 3¢1] lax1] [ 001 ]
0z Oxo op _ 5]
0¢a  Od¢o dzo — | _9¢2
Bml axz B;D L Bp i
Solving for 389;1 and 839;2 we obtain
Oz 061 961t M %@51_
oh | = |88 68 _ o
Op o Oxwa L op |

We can compute the various partial derivatives of ¢ as follows

¢1(z1, T2, P, w1, w2) =1dp — 2px1 — Wy
9 ¢

oy

9 d1

dxa

991

dp

¢2(z1, T2 P, w1, w2) =11p — 2px2 — W2
9 da

e

9 s

0o

991

dp

Now writing out the system we obtain for the case at hand we obtain

dxy d¢1 0417t _Baﬂ

o _

o | = |86 8% o,
dp

ap e e -

=0

=14 — 22,

=0

=11 — 229

Now substitute in the elements of the inverse matrix

Gal -2 0] [20 - 14
G 0 —2p 21y — 11

If we then invert the matrix we obtain

13

(67)

(68)

(69)

(70)

1)

(72)

(73)
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—5 0 ][22 — 14
0 —2£| |22 — 11

—
Qa. |

Q| T

‘GE@E

.
Il

2p
(74)
7 — x
P
Given that
xrp = 7 — Ewl pil
| (75)
i) =55 — 5’(02])71
we obtain
8{E1 - 7 — X1
dp p
7T — (7 —%wlpfl)
B p
1
—5 w1 p72
(76)
8{E2 5.5 — )
dp p
55 — (55 — Fwapt)
B p
1
:EWQP 2

which is the same as before.

2.7.3. Profit maximization example 3. Verify the implicit function theorem derivatives gil , gml , g“ , g“
. . . . 1 w2 w1 wo
for the profit maximization example 2.

2.7.4. Profit maximization example 4. A firm sells its output into a perfectly competitive market and faces a
fixed price p. It hires labor in a competitive labor market at a wage w, and rents capital in a competitive
capital market at rental rate r. The production is f(L, K). The production function is strictly concave. The
firm seeks to maximize its profits which are

m = pf(L, K) — wL — rK (77)
The first-order conditions for profit maximization are

I, :pr(L*, K*) —w =0

78
7k =pfx(L*, K*) —r =0 78)
This gives two implicit equations for K and L. The second order conditions are
0 Pr P R 1
— (L*, K* — t(L*, K* 7
gz LD <0 e o [8L8K] > Oat (L7, K7) 79)

We can compute these derivatives as
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r _dpfu(L K) — w)

oLz oL = rlrr
?*m  Opfx(L*, K*) — 1)
p— ) p— 80
OK> oL pFrx 50
Pr WAL K —w)
OLOK oK - PERL

The first of the second order conditions is satisfied by concavity of f. We then write the second condition
as

_|pfer plir|
pikL Plkk

A o

= p*(frr fxx — fxr frx) > 0
The expression is positive or at least non-negative because f is assumed to be strictly concave.

= p?

Now we wish to determine the effects on input demands, L* and K*, of changes in the input prices.
Using the implicit function theorem in finding the partial derivatives with respect to w, we obtain for the
first equation

oL* o0K*
TLL —— + Tk —— + Trw =0
9 L* oK (82)
= pfir =— + pfkeL -1=0
ow ow
For the second equation we obtain
L* OK*
7TKL8—+7TKK 3 + Trw =0
v Lo . (83)
= pfKkL o + pfrK 0 =0
We can write this in matrix form as
prL prK 8L* /8’(0 _ 1 (84)
prL prK 8K* /8’(0 0
Using Cramer’s rule, we then have the comparative-statics results
1 pfik ’
OL* _ 0 pfrk _ D frK
ow D D (85)
pfrr 1 ’
OK* _|pfkr 0|  pfkr
ow D N D

The sign of the first is negative because fx x < 0 and D > 0 from the second-order conditions. Thus, the
demand curve for labor has a negative slope. However, in order to sign the effect of a change in the wage
rate on the demand for capital, we need to know the sign of fx 1, the effect of a change in the labor input
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on the marginal product of capital. We can derive the effects of a change in the rental rate of capital in a
similar way:.

2.7.5. Profit maximization example 5. Let the production function be Cobb-Douglas of the form y = L* K” .
Find the comparative-static effects JL* /0w and 0K* /Ow. Profits are given by

m=pf(L, K) — wL — rK

86
=pL*K’ —wL — rK (86)
The first-order conditions are for profit maximization are
7, =apLl® TKP —w =0
. (87)
Kk =fpL KPP~ —r =0
This gives two implicit equations for K and L. The second order conditions are
0 Pr P 2r 1°
L, K* 0 - Oat (L*, K* 88
gz L KD <0 5 G [8L8K]>a(’ ) (88)
We can compute these derivatives as
0 o
BT =a(a — )pL* 2KF
0
- = — 1)pL¥KP—2 89
oz =P8 — Dp (89)
0
— Lo~ 1 Kﬁ —1
oror ~ 07

The first of the second order conditions is satisfied as long as «, 3 < 1. We can write the second condition
as

|ala = 1)pLe—2K” afBpLe— KA1
D] appremikot g - pprersr |70 0
We can simplify D as follows
D _ ale — )pL¥—2KP afpLle 1 KA1
T aBpLolKf-' BB - )pLeKP-?
o] a(a—-1)Lo"2KF aB L 1KA-1
=p aﬁLaflKﬁfl 6(6_1)[/04[([172 (91)
:p2 O[ﬁ a — 1 6_ 1)LO¢72 KﬁLaKﬁ72 _a262L2a72K2[372]

[
=p? [aBLO 2 KO LYKP 72 ((a — 1)(B — 1) — af)]
=p® [aBL* *KL*KP~? (af — B —a+1—af)]
=p® [aBL* P K L*KP~? (1 — a — B)]
The condition is then that

D =p?aBL** 2K 21 —a—-p3) >0 (92)
This will be true if a+5 < 1.
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Now we wish to determine the effects on input demands, L* and K*, of changes in the input prices.
Using the implicit function theorem in finding the partial derivatives with respect to w, we obtain for the
first equation

oL* OK*
T, -— + Tk —— + Trw =0
* K*
= ala — l)pLa’QKﬁai + aﬁpLo"lKﬁ’la— - 1=0
dw ow

For the second equation we obtain
OL* OK*
TKL + TKK + Trkw =0
ow ow
OL*
ow

(94)
= afpL* KA1 + 6B - 1)pL*KP~2 =0
We can write this in matrix form as
ala — 1)pL¥—2KP afBp L~ tKA-! OL* Jow |1 95)
afBpLe~1KP-! B(B — 1)pL>KP—?2 OK* /0w 1o
Using Cramer’s rule, we then have the comparative-statics results

1 afpLle-1KA-1
oL* |0 B(B — 1)pL¥KP—?2

BB - 1)pLrK"~?

ow D D
(96)
ala — N)pL*—2KP 1
OK* aﬁpLaflKﬁfl O’ _aﬁpLaflKﬁfl
ow D N D
The sign of the first of is negative because p 3 (3 — 1) L* K =2 < 0(8 < 1),and D > 0 by the second

order conditions. The cross partial derivative %—If: is also less than zero because pa L~ 'KP~1 > 0

and D > 0. So, for the case of a two-input Cobb-Douglas production function, an increase in the wage
unambiguously reduces the demand for capital.

3. TANGENTS TO ¢(x;, 22, . ..,) = ¢ AND PROPERTIES OF THE GRADIENT

3.1. Direction numbers.

A direction in R? is determined by an ordered pair of two numbers (a,b), not both zero, called direction
numbers. The direction corresponds to all lines parallel to the line through the origin (0,0) and the point
(a,b). The direction numbers (a,b) and the direction numbers (ra,rb) determine the same direction, for any
nonzero r.

A direction in R" is determined by an ordered n-tuple of numbers (29,29, ..., 2%), not all zero, called di-
rection numbers. The direction corresponds to all lines parallel to the line through the origin (0,0, ... ,0) and
the point (2,29, ...,2%). The direction numbers (29, 29, ..., 2% and the direction numbers (rz9, rz9, ..., ra?)
determine the same direction, for any nonzero r. If pick an r in the following way.

1 1
Va2 + @92 + .. + @92 a0

r| =

then
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Sl
cosy; =
V)2 + @)? + ...+ (@)?
'
cos7yy =
V)2 + @)? + ..+ (@)?
0
CcosYp, = In

VED)? + (29?2 + ...+ (af)?

where ; is the angle of the vector running through the origin and the point (29,29, ...

(98)

) with the x;

axis. With this choice of r, the direction numbers (ra,rb) are just the cosines of the angles that the line makes
with the positive x;,xo, ... and x,, axes. These angles v, 72 , ... are called the direction angles, and their

cosines (cos[y1], cos[y2], . ..) are called the direction cosines of that direction. See figure 1. They satisfy

cos?[y1] + cos?[ye] + ... + cos?[y,] = 1

FIGURE 1. Direction numbers as cosines of vector angles with the respective axes

From equation 98, we can also write

2 = (ZE?,.T,g,,JZ%) = (|ZEO|COS[’Yl], |$O|COS[72L ,|ZEO|COS[’Yn)

‘I

= |z”| (cos[11], cos[y2], - . ., cos[yn])

Therefore

(99)
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ﬁxo = (cos[y1], cos[yz2], . .., cos[yn]) (100)

which says that the direction cosines of x” are the components of the unit vector in the direction of x°.

Theorem 3. Iff) is the angle between the vectors da abd b, then
a-b = l|a||b| cosf (101)
3.2. Planes in R".
3.2.1. Planes through the origin. A plane through the origin in R" is given implicitly by the equation
pr =0
(102)

— p1r1 + p2r2 + ... + ppx, =0

3.2.2. More general planes in R". A plane in " through the point (20,29, ...,29) is given implicitly by the
equation

Pz —a% =0

(103)
—pi(zr —29) + po(ra —29) + ... + pa(wn —2°) =0
We say that the vector p is orthogonal to the vector (z — 2°) or
xry — x?
Xro — xg
1 P2 ... P : =0 (104)
T, — x?l

The coefficients [p1,p2, ... , pn] are the direction numbers of a line L passing through the point 20 or
alternatively they are the coordinates of a point on a line through the origin that is parallel to L. If p; is
equal to -1, we can write equation 104 as follows

1 — 2) = pa(re —29) + pa3(v2a —23) + ... + pulzn —22) (105)

3.3. The general equation for a tangent hyperplane.

Theorem 4. Suppose D' C R™ is open, (29,29,...,20) € D', ¢ : D' — R is continuously differentiable,
and D¢ (29,29, ...,2%) # 0. Suppose ¢ (29,29, ...,2%) = c Then consider the level surface of the function
¢ (z1,22,...,2,) = ¢(29,29,...,2%) = c. Denote this level service by M = ¢~({c}) which consists all all

values of (z1,2a, ..., xy) such that ¢(x1, 22, ..., x,) = c. Then the tangent hyperplane at (29,23, ...,2%) of M is
given by

TooM = {x€R": DY(2°)(z — ") = 0} (106)
that is V¢ (x°) is nomal to the tangent hyperplane.
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Proof. Because D¢(z°) # 0, we may assume without loss of generality that g—i(:co) # 0. Apply the implicit
function theorem (Theorem 1) to the function ¢ — c. We then know that the level set can be expressed as a
graph of the function x; = ¢ (z2, 3, . . ., :cn) for some continuous function 11)1. Now the tangent plane to the
graph x; = 1/)1(502, Ts3,...,T,) at the point x° = [¢1 (29, 29, ..., 20), 29, 23, .. .2%] is the graph of the gradient

Dy (38, X8, ..., x?%) translated so that it passes through x. Using equation 105 where gfl (29, 29,...,29)
are the direction numbers we obtain

r — 2Y = gﬁl (29,29, ..., 20) (z — 2}) (107)

k=2
Now make the substitution from equation 4 in equation 107 to obtain

0p (¥ (23,25, . wy) @, G ., 7))

0 _ - Oz 0
R Z_ 01 (w3, 2G, ..., 2) @h, @, ... 7)) (k= 7k)
k=2 o7
(108)
n Bg(xo)
= Z - 3¢ZC;0) (xk - x%)
k=2 T oz
Rearrange equation 108 to obtain
n 0 0
3 9oz )(:ck —29) + 9oz )(:cl 2% = Do) (z —2°) = 0 (109)
P 8CCk 8561
O
3.4. Example. Consider a function
Yy = f ('rla L2, =, CCn) (110)
evaluated at the point (29, 29, -+, 22)
The equation of the hyperplane tangent to the surface at this point is given by
9f 9f 9f
_ .0y 9/ _ .0 97 _ .0 97 _ .0
(= 9") =5 (@ = o) + 5@ =) + o+ (- ad)
9f oy, 9F 0 9f 0 0
= (zy — =L (g — = (z, — —(y — - 112
of af o f
= flwr, a2, x0) = f(af,23, @ n)+37(~’01—501) 3—($2—$8)+ +£(~’C —ay)
where the partial derivatives 7~ f are evaluated at (29, 29, -+, 2¥) . We can also write this as
f@) = f@) = V@)@ - " (113)
Compeare this to the tangent equation with one variable
— @) = @) (z — 2°
y = f@7) = @) ) (114)

=y =f@") + f@°)(z - 2°)

and the tangent plane with two variables
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y - f@0 D) = 2Ly —a9) + Ly - af)
8 8562
o/ o7 (115)
=Yy = f(x(fa%) + 8—($1—$1) + 8—($2—$g)
T2
3.5. Vector functions of a real variable. Let x;, X2, ... ,X,, be functions of a variable t defined on an interval
I and write

z(t) = (x1(t), z2(t), ..., xn(t)) (116)
The function t — x(t) is a transformation from R to R™ and is called a vector function of a real variable.
As x runs through I, x(t) traces out a set of points in n-space called a curve. In particular, if we put

o1 (t) = 29 + tay, x2(t) = 2 + tag, -+, 2, (t) = 22 + ta, (117)
the resulting curve is a straight line in n-space. It passes through the point z° = (29, 29, -+, 20 ) att
=0, and it is in the direction of the vector a = (a1, as, -+, a, ). We can define the derivative of x(t) as
dx ) dx1(t) dxo(t) dx,(t)
8T _ i) = - 118
dt () ( dt ~ dt 7 dt (118)

If K is a curve in n-space traced out by x(t), then & (¢) can be interpreted as a vector tangent to K at the
point t.

3.6. Tangent vectors.

Consider the function r(t) = (x1(t), x2(t), -+, x,(t) ) and its derivative 7 (t) = (&1(¢), 22(t),. .., Tn(t)).
This function traces out a curve in R™. We can call the curve K. For fixed t,

. .or(t+ h)—r(t)
) = hhino h
If 7 (t) # 0, then for t + h close enough to t, the vector r(t+h) - r(t) will not be zero. As h tends to 0, the
quantity r(t+h) - r(t) will come closer and closer to serving as a direction vector for the tangent to the curve
at the point P. This can be seen in figure 2

(119)

It may be tempting to take this difference as approximation of the direction of the tangent and then take
the limit

dim [r(t +h) = r(®)] (120)

and call the limit the direction vector for the tangent. But the limit is zero and the zero vector has no
direction. Instead we use the a vector that for small h has a greater length, that is we use

r(t + h) — r(t)

3 (121)
For any real number h, this vector is parallel to r(t+h) - r(t). Therefore its limit
. o r(t+h)—r(t)
7(t) = hhino 5 (122)

can be taken as a direction vector for the tangent line.
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FIGURE 2. Tangent to a Curve

k)

%

3.7. Tangent lines, level curves and gradients. Consider the equation

f@) = f(z1, 22, ,20) = ¢ (123)
which defines a level curve for the function f. Let 2° = (29, 29, ---, 2 ) be a point on the surface and
let z (t) = (z1(t), z2(t), -+, zn(t)) represent a differentiable curve K lying on the surface and passing

through x° at t = t°. Because K lies on the surface, f [x(t)] = f [x1(t), x2(t), ,,, X, (t)] = ¢ for all t. Now
differentiate equation 123 with respect to t

0 f(x) Oz 0 f(x) Oxs 0 f(x) Oxs
0z ot 0o ot 0o ot (124)
= V@) -z =0
Because the vector & (t) = (&1(¢), Z2(t), - -+, Z»(t) ) has the same direction as the tangent to the curve

K at x°, the gradient of f is orthogonal to the curve K at the point x°.

Theorem 5. Suppose f(x1, x2, ..., Xy,) is continuous and differentiable in a domain A and suppose that x=(x1, X2,
..., Xp) € A. The gradient
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_(9F 9Ff af
Vf - (8—561,8—:62,,%>

has the following properties at points x where Vf(x) # 0.
(i) Vf(x)is orthogonal to the level surfaces f(x1, X2, . .., X,) = C.
(if) Vf(x) points in the direction of the steepest increase on f.
(iii) ||V f(x)|| is the value of the directional derivative in the direction of steepest increase.

23
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