THE IMPLICIT FUNCTION THEOREM

1. A SIMPLE VERSION OF THE IMPLICIT FUNCTION THEOREM

1.1. Statement of the theorem.

Theorem 1 (Simple Implicit Function Theorem). Suppose that ϕ is a real-valued functions defined on a domain D and continuously differentiable on an open set $D^{1} \subset D \subset R^{n},\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right) \in D^{1}$, and

$$
\begin{equation*}
\phi\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right)=0 \tag{1}
\end{equation*}
$$

Further suppose that

$$
\begin{equation*}
\frac{\partial \phi\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right)}{\partial x_{1}} \neq 0 \tag{2}
\end{equation*}
$$

Then there exists a neighborhood $V_{\delta}\left(x_{2}^{0}, x_{3}^{0}, \ldots, x_{n}^{0}\right) \subset D^{1}$, an open set $W \subset R^{1}$ containing x_{1}^{0} and a real valued function $\psi_{1}: V \rightarrow W$, continuously differentiable on V, such that

$$
\begin{align*}
& x_{1}^{0}=\psi_{1}\left(x_{2}^{0}, x_{3}^{0}, \ldots, x_{n}^{0}\right) \\
& \phi\left(\psi_{1}\left(x_{2}^{0}, x_{3}^{0}, \ldots, x_{n}^{0}\right), x_{2}^{0}, x_{3}^{0}, \ldots, x_{n}^{0}\right) \equiv 0 \tag{3}
\end{align*}
$$

Furthermore for $k=2, \ldots, n$,

$$
\begin{equation*}
\frac{\partial \psi_{1}\left(x_{2}^{0}, x_{3}^{0}, \ldots, x_{n}^{0}\right)}{\partial x_{k}}=-\frac{\frac{\partial \phi\left(\psi_{1}\left(x_{2}^{0}, x_{3}^{0}, \ldots, x_{n}^{0}\right), x_{2}^{0}, x_{3}^{0}, \ldots, x_{n}^{0}\right)}{\partial x_{k}}}{\frac{\partial \phi\left(\psi_{1}\left(x_{2}^{0}, x_{3}^{0}, \ldots, x_{n}^{0}\right), x_{2}^{0}, x_{3}^{0}, \ldots, x_{n}^{0}\right)}{\partial x_{1}}}=-\frac{\frac{\partial \phi\left(x^{0}\right)}{\partial x_{k}}}{\frac{\partial \phi\left(x^{0}\right)}{\partial x_{1}}} \tag{4}
\end{equation*}
$$

We can prove this last statement as follows.
Define $\mathrm{g}: \mathrm{V} \rightarrow \mathrm{R}^{n}$ as

$$
g\left(x_{2}^{0}, x_{3}^{0}, \ldots, x_{n}^{0}\right)=\left[\begin{array}{c}
\psi_{1}\left(x_{2}^{0}, \ldots, x_{n}^{0}\right) \tag{5}\\
x_{2}^{0} \\
x_{3}^{0} \\
\vdots \\
x_{n}^{0}
\end{array}\right]
$$

Then $(\phi \circ g)\left(x_{2}^{0}, \ldots, x_{n}^{0}\right) \equiv 0$ for all $\left(x_{2}^{0}, \ldots, x_{n}^{0}\right) \in V$. Thus by the chain rule

$$
\begin{align*}
& D(\phi \circ g)\left(x_{2}^{0}, \ldots, x_{n}^{0}\right)=D \phi\left(g\left(x_{2}^{0}, \ldots, x_{n}^{0}\right)\right) D g\left(x_{2}^{0}, \ldots x_{n}^{0}\right)=0 \\
& =D \phi\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right) D g\left(x_{2}^{0}, \ldots x_{n}^{0}\right)=0 \\
& =D \phi\left(\begin{array}{c}
x_{1}^{0} \\
x_{2}^{0} \\
x_{3}^{0} \\
\vdots \\
x_{n}^{0}
\end{array}\right) D\left[\begin{array}{c}
\psi_{1}\left(x_{2}^{0}, \ldots, x_{n}^{0}\right) \\
x_{2}^{0} \\
x_{3}^{0} \\
\vdots \\
x_{n}^{0}
\end{array}\right]=0 \tag{6}\\
& \Rightarrow\left[\frac{\partial \phi}{\partial x_{1}}, \frac{\partial \phi}{\partial x_{2}}, \ldots, \frac{\partial \phi}{\partial x_{n}}\right]\left[\begin{array}{cccc}
\frac{\partial \psi_{1}}{\partial x_{2}} & \frac{\partial \psi_{1}}{\partial x_{3}} & \ldots & \frac{\partial \psi_{1}}{\partial x_{n}} \\
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & \ldots & 0
\end{array}\right]
\end{align*}
$$

For any $k=2,3, \ldots, n$, we then have

$$
\begin{align*}
\frac{\partial \phi\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right)}{\partial x_{1}} \frac{\partial \psi_{1}\left(x_{2}^{0}, \ldots, x_{n}^{0}\right)}{\partial x_{k}}+ & \frac{\partial \phi\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right)}{\partial x_{k}}=0 \\
& \Rightarrow \frac{\partial \psi_{1}\left(x_{2}^{0}, \ldots, x_{n}^{0}\right)}{\partial x_{k}}=-\frac{\frac{\partial \phi\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right)}{\partial x_{k}}}{\frac{\partial \phi\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right)}{\partial x_{1}}} \tag{7}
\end{align*}
$$

We can, of course, solve for any other $x_{k}=\psi_{k}\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{k-1}^{0}, x_{k+1}^{0}, \ldots, x_{n}^{0}\right)$, as a function of the other x 's rather than x_{1} as a function of $\left(x_{2}^{0}, x_{3}^{0} \ldots, x_{n}^{0}\right)$.

1.2. Examples.

1.2.1. Production function. Consider a production function given by

$$
\begin{equation*}
y=f\left(x_{1}, x_{2} \ldots, x_{n}\right) \tag{8}
\end{equation*}
$$

Write this equation implicitly as

$$
\begin{equation*}
\phi\left(x_{1}, x_{2}, \ldots, x_{n}, y\right)=f\left(x_{1}, x_{2} \ldots, x_{n}\right)-y=0 \tag{9}
\end{equation*}
$$

where ϕ is now a function of $\mathrm{n}+1$ variables instead of n variables. Assume that ϕ is continuously differentiable and the Jacobian matrix has rank 1. i.e.,

$$
\begin{equation*}
\frac{\partial \phi}{\partial x_{j}}=\frac{\partial f}{\partial x_{j}} \neq 0, \quad j=1,2, \ldots, n \tag{10}
\end{equation*}
$$

Given that the implicit function theorem holds, we can solve equation 9 for x_{k} as a function of y and the other x^{\prime} s i.e.

$$
\begin{equation*}
x_{k}^{*}=\psi_{k}\left(x_{1}, x_{2}, \ldots, x_{k-1}, x_{k+1}, \ldots, y\right) \tag{11}
\end{equation*}
$$

Thus it will be true that

$$
\begin{equation*}
\phi\left(y, x_{1}, x_{2}, \ldots, x_{k-1}, x_{k}^{*}, x_{k+1}, \ldots, x_{n}\right) \equiv 0 \tag{12}
\end{equation*}
$$

or that

$$
\begin{equation*}
y \equiv f\left(x_{1}, x_{2}, \ldots, x_{k-1}, x_{k}^{*}, x_{k+1}, \ldots, x_{n}\right) \tag{13}
\end{equation*}
$$

Differentiating the identity in equation 13 with respect to x_{j} will give

$$
\begin{equation*}
0=\frac{\partial f}{\partial x_{j}}+\frac{\partial f}{\partial x_{k}} \frac{\partial x_{k}}{\partial x_{j}} \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial x_{k}}{\partial x_{j}}=\frac{-\frac{\partial f}{\partial x_{j}}}{\frac{\partial f}{\partial x_{k}}}=R T S=M R S \tag{15}
\end{equation*}
$$

Or we can obtain this directly as

$$
\begin{align*}
\frac{\partial \phi\left(y, x_{1}, x_{2}, \ldots, x_{k-1}, \psi_{k}, x_{k+1}, \ldots, x_{n}\right)}{\partial x_{k}} \frac{\partial \psi_{k}}{\partial x_{j}} & =\frac{-\partial \phi\left(y, x_{1}, x_{2}, \ldots, x_{k-1}, \psi_{k}, x_{k+1}, \ldots, x_{n}\right)}{\partial x_{j}} \\
\Rightarrow \frac{\partial \phi}{\partial x_{k}} \frac{\partial x_{k}}{\partial x_{j}} & =-\frac{\partial \phi}{\partial x_{j}} \tag{16}\\
\Rightarrow \frac{\partial x_{k}}{\partial x_{j}} & =\frac{-\frac{\partial f}{\partial x_{j}}}{\frac{\partial f}{\partial x_{k}}}=M R S
\end{align*}
$$

Consider the specific example

$$
y^{0}=f\left(x_{1}, x_{2}\right)=x_{1}^{2}-2 x_{1} x_{2}+x_{1} x_{2}^{3}
$$

To find the partial derivative of x_{2} with respect to x_{1} we find the two partials of f as follows

$$
\begin{aligned}
\frac{\partial x_{2}}{\partial x_{1}} & =-\frac{\frac{\partial f}{\partial x_{1}}}{\frac{\partial f}{\partial x_{2}}} \\
& =-\frac{2 x_{1}-2 x_{2}+x_{2}^{3}}{3 x_{1} x_{2}^{2}-2 x_{1}} \\
& =\frac{2 x_{2}-2 x_{1}-x_{2}^{3}}{3 x_{1} x_{2}^{2}-2 x_{1}}
\end{aligned}
$$

1.2.2. Utility function.

$$
u^{0}=u\left(x_{1}, x_{2}\right)
$$

To find the partial derivative of x_{2} with respect to x_{1} we find the two partials of U as follows

$$
\frac{\partial x_{2}}{\partial x_{1}}=-\frac{\frac{\partial u}{\partial x_{1}}}{\frac{\partial u}{\partial x_{2}}}
$$

1.2.3. Another utility function. Consider a utility function given by

$$
u=x_{1}^{\frac{1}{4}} x_{2}^{\frac{1}{3}} x_{3}^{\frac{1}{6}}
$$

This can be written implicitly as

$$
f\left(u, x_{1}, x_{2}, x_{3}\right)=u-x_{1}^{\frac{1}{4}} x_{2}^{\frac{1}{3}} x_{3}^{\frac{1}{6}}=0
$$

Now consider some of the partial derivatives arising from this implicit function. First consider the marginal rate of substitution of x_{1} for x_{2}

$$
\begin{aligned}
\frac{\partial x_{1}}{\partial x_{2}} & =\frac{\frac{-\partial f}{\partial x_{2}}}{\frac{\partial f}{\partial x_{1}}} \\
& =\frac{-\left(-\frac{1}{3}\right) x_{1}^{\frac{1}{4}} x_{2}^{-\frac{2}{3}} x_{3}^{\frac{1}{6}}}{\left(-\frac{1}{4}\right) x_{1}^{-\frac{3}{4}} x_{2}^{\frac{1}{3}} x_{3}^{\frac{1}{6}}} \\
& =-\frac{4}{3} \frac{x_{1}}{x_{2}}
\end{aligned}
$$

Now consider the marginal rate of substitution of x_{2} for x_{3}

$$
\begin{aligned}
\frac{\partial x_{2}}{\partial x_{3}} & =\frac{\frac{-\partial f}{\partial x_{3}}}{\frac{\partial f}{\partial x_{2}}} \\
& =\frac{-\left(-\frac{1}{6}\right) x_{1}^{\frac{1}{4}} x_{2}^{\frac{1}{3}} x_{3}^{-\frac{5}{6}}}{\left(-\frac{1}{3}\right) x_{1}^{\frac{1}{4}} x_{2}^{-\frac{2}{3}} x_{3}^{\frac{1}{6}}} \\
& =-\frac{1}{2} \frac{x_{2}}{x_{3}}
\end{aligned}
$$

Now consider the marginal utility of x_{2}

$$
\begin{aligned}
\frac{\partial u}{\partial x_{2}} & =\frac{\frac{-\partial f}{\partial x_{2}}}{\frac{\partial f}{\partial u}} \\
& =\frac{-\left(-\frac{1}{3}\right) x_{1}^{\frac{1}{4}} x_{2}^{-\frac{2}{3}} x_{3}^{\frac{1}{6}}}{1} \\
& =\frac{1}{3} x_{1}^{\frac{1}{4}} x_{2}^{-\frac{2}{3}} x_{3}^{\frac{1}{6}}
\end{aligned}
$$

2. THE GENERAL IMPLICIT FUNCTION THEOREM WITH P INDEPENDENT VARIABLES AND M IMPLICIT EQUATIONS

2.1. Motivation for implicit function theorem. We are often interested in solving implicit systems of equations for m variables, say $x_{1}, x_{2}, \ldots, x_{m}$ in terms of $m+p$ variables where there are a minimum of m equations in the system. We typically label the variables $\mathrm{x}_{m+1}, \mathrm{x}_{m+2}, \ldots, \mathrm{x}_{m+p}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{p}$. We are frequently interested in the derivatives $\frac{\partial x_{i}}{\partial x_{j}}$ where it is implicit that all other x_{k} and all $\mathrm{y} \ell$ are held constant. The conditions guaranteeing that we can solve for m of the variables in terms of p variables along with a formula for computing derivatives are given by the implicit function theorem.

One motivation for the implicit function theorem is that we can eliminate m variables from a constrained optimization problem using the constraint equations. In this way the constrained problem is converted to an unconstrained problem and we can use the results on unconstrained problems to determine a solution.
2.2. Description of a system of equations. Suppose that we have m equations depending on $m+p$ variables (parameters) written in implicit form as follows

$$
\begin{array}{cc}
\phi_{1}\left(x_{1}, x_{2}, \cdots, x_{m}, y_{1}, y_{2}, \cdots, y_{p}\right) & =0 \\
\phi_{2}\left(x_{1}, x_{2}, \cdots, x_{m}, y_{1}, y_{2}, \cdots, y_{p}\right) & =0 \\
\vdots & =0 \tag{17}\\
\phi_{m}\left(x_{1}, x_{2}, \cdots, x_{m}, y_{1}, y_{2}, \cdots, y_{p}\right) & =0
\end{array}
$$

For example with $\mathrm{m}=2$ and $\mathrm{p}=3$, we might have

$$
\begin{align*}
\phi_{1}\left(x_{1}, x_{2}, p, w_{1}, w_{2}\right) & =(0.4) p x_{1}^{-0.6} x_{2}^{0.2}-w_{1}=0 \\
\phi_{2}\left(x_{1}, x_{2}, p, w_{1}, w_{2}\right) & =(0.2) p x_{1}^{0.4} x_{2}^{-0.8}-w_{2}=0 \tag{18}
\end{align*}
$$

where $\mathrm{p}, \mathrm{w}_{1}$ and w_{2} are the "independent" variables $\mathrm{y}_{1}, \mathrm{y}_{2}$, and y_{3}.
2.3. Jacobian matrix of the system. The Jacobian matrix of the system in 17 is defined as matrix of first partials as follows

$$
J=\left[\begin{array}{cccc}
\frac{\partial \phi_{1}}{\partial x_{1}} & \frac{\partial \phi_{1}}{\partial x_{2}} & \cdots & \frac{\partial \phi_{1}}{\partial x_{m}} \tag{19}\\
\frac{\partial \phi_{2}}{\partial x_{1}} & \frac{\partial \phi_{2}}{\partial x_{2}} & \cdots & \frac{\partial \phi_{2}}{\partial x_{m}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial \phi_{m}}{\partial x_{1}} & \frac{\partial \phi_{m}}{\partial x_{2}} & \cdots & \frac{\partial \phi_{m}}{\partial x_{m}}
\end{array}\right]
$$

This matrix will be of rank m if its determinant is not zero.

2.4. Statement of implicit function theorem.

Theorem 2 (Implicit Function Theorem). Suppose that ϕ_{i} are real-valued functions defined on a domain D and continuously differentiable on an open set $D^{1} \subset D \subset R^{m+p}$, where $p>0$ and

$$
\begin{align*}
\phi_{1}\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{m}^{0}, y_{1}^{0}, y_{2}^{0}, \ldots, y_{p}^{0}\right) & =0 \\
\phi_{2}\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{m}^{0}, y_{1}^{0}, y_{2}^{0}, \ldots, y_{p}^{0}\right) & =0 \\
\vdots & =0 \tag{20}\\
\phi_{m}\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{m}^{0}, y_{1}^{0}, y_{2}^{0}, \ldots, y_{p}^{0}\right) & =0 \\
\left(x^{0}, y^{0}\right) & \in D^{1} .
\end{align*}
$$

We often write equation 20 as follows

$$
\begin{equation*}
\phi_{i}\left(x^{0}, y^{0}\right)=0, \quad i=1,2, \ldots, m, \text { and }\left(x^{0}, y^{0}\right) \in D^{1} . \tag{21}
\end{equation*}
$$

Assume the Jacobian matrix $\left[\frac{\partial \phi_{i}\left(x^{0}, y^{0}\right)}{\partial x_{j}}\right]$ has rank m. Then there exists a neighborhood $N_{\delta}\left(x^{0}, y^{0}\right) \subset D^{1}$, an open set $D^{2} \subset R^{p}$ containing y^{0} and real valued functions $\psi_{k}, k=1,2, \ldots, m$, continuously differentiable on D^{2}, such that the following conditions are satisfied:

$$
\begin{align*}
x_{1}^{0} & =\psi_{1}\left(y^{0}\right) \\
x_{2}^{0} & =\psi_{2}\left(y^{0}\right) \\
& \vdots \tag{22}\\
x_{m}^{0} & =\psi_{m}\left(y^{0}\right)
\end{align*}
$$

For every $y \in D^{2}$, we have

$$
\phi_{i}\left(\psi_{1}(y), \psi_{2}(y), \ldots, \psi_{m}(y), y_{1}, y_{2}, \ldots, y_{p}\right) \equiv 0, \quad i=1,2, \ldots, m
$$

or

$$
\phi_{i}(\psi(y), y) \equiv 0, \quad i=1,2, \ldots, m
$$

We also have that for all $(x, y) \in N_{\delta}\left(x^{0}, y^{0}\right)$, the Jacobian matrix $\left[\frac{\partial \phi_{i}(x, y)}{\partial x_{j}}\right]$ has rank m. Furthermore for $y \in D^{2}$, the partial derivatives of $\psi(y)$ are the solutions of the set of linear equations

$$
\begin{gather*}
\sum_{k=1}^{m} \frac{\partial \phi_{1}(\psi(y), y)}{\partial x_{k}} \frac{\partial \psi_{k}(y)}{\partial y_{j}}=\frac{-\partial \phi_{1}(\psi(y), y)}{\partial y_{j}} \\
\sum_{k=1}^{m} \frac{\partial \phi_{2}(\psi(y), y)}{\partial x_{k}} \frac{\partial \psi_{k}(y)}{\partial y_{j}}=\frac{-\partial \phi_{2}(\psi(y), y)}{\partial y_{j}} \tag{24}\\
\vdots \\
\sum_{k=1}^{m} \frac{\partial \phi_{m}(\psi(y), y)}{\partial x_{k}} \frac{\partial \psi_{k}(y)}{\partial y_{j}}=\frac{-\partial \phi_{m}(\psi(y), y)}{\partial y_{j}}
\end{gather*}
$$

We can write equation 24 in the following alternative manner

$$
\begin{equation*}
\sum_{k=1}^{m} \frac{\partial \phi_{i}(\psi(y), y)}{\partial x_{k}} \frac{\partial \psi_{k}(y)}{\partial y_{j}}=\frac{-\partial \phi_{i}(\psi(y), y)}{\partial y_{j}} \quad i=1,2, \ldots, m \tag{25}
\end{equation*}
$$

or perhaps most usefully as the following matrix equation

$$
\left[\begin{array}{cccc}
\frac{\partial \phi_{1}}{\partial x_{1}} & \frac{\partial \phi_{1}}{\partial x_{2}} & \cdots & \frac{\partial \phi_{1}}{\partial x_{m}} \tag{26}\\
\frac{\partial \phi_{2}}{\partial x_{1}} & \frac{\partial \phi_{2}}{\partial x_{2}} & \cdots & \frac{\partial \phi_{2}}{\partial x_{m}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial \phi_{m}}{\partial x_{1}} & \frac{\partial \phi_{m}}{\partial x_{2}} & \cdots & \frac{\partial \phi_{m}}{\partial x_{m}}
\end{array}\right]\left[\begin{array}{c}
\frac{\partial \psi_{1}(y)}{\partial y_{j}} \\
\frac{\partial \psi_{2}(y)}{\partial y_{j}} \\
\vdots \\
\frac{\partial \psi_{m}(y)}{\partial y_{j}}
\end{array}\right]=\left[\begin{array}{c}
\frac{-\partial \phi_{1}(\psi(y), y)}{\partial y_{j}} \\
\frac{-\partial \phi_{2}(\psi(y), y)}{\partial y_{j}} \\
\vdots \\
\frac{-\partial \phi_{m}(\psi(y), y)}{\partial y_{j}}
\end{array}\right]
$$

This of course implies

$$
\left[\begin{array}{c}
\frac{\partial \psi_{1}(y)}{\partial y_{j}} \tag{27}\\
\frac{\partial \psi_{2}(y)}{\partial y_{j}} \\
\vdots \\
\frac{\partial \psi_{m}(y)}{\partial y_{j}}
\end{array}\right]=-\left[\begin{array}{cccc}
\frac{\partial \phi_{1}}{\partial x_{1}} & \frac{\partial \phi_{1}}{\partial x_{2}} & \cdots & \frac{\partial \phi_{1}}{\partial x_{m}} \\
\frac{\partial \phi_{2}}{\partial x_{1}} & \frac{\partial \phi_{2}}{\partial x_{2}} & \cdots & \frac{\partial \phi_{2}}{\partial x_{m}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial \phi_{m}}{\partial x_{1}} & \frac{\partial \phi_{m}}{\partial x_{2}} & \cdots & \frac{\partial \phi_{m}}{\partial x_{m}}
\end{array}\right]^{-1}\left[\begin{array}{c}
\frac{\partial \phi_{1}(\psi(y), y)}{\partial y_{j}} \\
\frac{\partial \phi_{2}(\psi(y), y)}{\partial y_{j}} \\
\vdots \\
\frac{\partial \phi_{m}(\psi(y), y)}{\partial y_{j}}
\end{array}\right]
$$

We can expand equation 27 to cover the derivatives with respect to the other y_{ℓ} by expanding the matrix equation

$$
\left[\begin{array}{cccc}
\frac{\partial \psi_{1}(y)}{\partial y_{1}} & \frac{\partial \psi_{1}(y)}{\partial y_{2}} & \ldots & \frac{\partial \psi_{1}(y)}{\partial y_{p}} \\
\frac{\partial \psi_{2}(y)}{\partial y_{1}} & \frac{\partial \psi_{2}(y)}{\partial y_{2}} & \ldots & \frac{\partial \psi_{2}(y)}{\partial y_{p}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial \psi_{m}(y)}{\partial y_{1}} & \frac{\partial \psi_{m}(y)}{\partial y_{2}} & \cdots & \frac{\partial \psi_{m}(y)}{\partial y_{p}}
\end{array}\right]=-\left[\begin{array}{cccccc}
\frac{\partial \phi_{1}}{\partial x_{1}} & \frac{\partial \phi_{1}}{\partial x_{2}} & \cdots & \frac{\partial \phi_{1}}{\partial x_{m}} \\
\frac{\partial \phi_{2}}{\partial x_{1}} & \frac{\partial \phi_{2}}{\partial x_{2}} & \cdots & \frac{\partial \phi_{2}}{\partial x_{m}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial \phi_{m}}{\partial x_{1}} & \frac{\partial \phi_{m}}{\partial x_{2}} & \cdots & \frac{\partial \phi_{m}}{\partial x_{m}}
\end{array}\right]^{-1}\left[\begin{array}{ccc}
\frac{\partial \phi_{1}(\psi(y), y)}{\partial y_{1}} & \frac{\partial \phi_{1}(\psi(y), y)}{\partial y_{2}} & \cdots \\
\frac{\partial \phi_{1}(\psi(y), y)}{\partial y_{p}} \\
\frac{\left.\partial \phi_{2}(y), y\right)}{\partial y_{1}} & \frac{\partial \phi_{2}(\psi(y), y)}{\partial y_{2}} & \cdots \\
\vdots & \frac{\partial \phi_{2}(\psi(y), y)}{\partial y_{p}} \\
\frac{\partial \phi_{m}(\psi(y), y)}{\partial y_{1}} & \frac{\partial \phi_{m}(\psi(y), y)}{\partial y_{2}} & \cdots \\
\vdots & \frac{\partial \phi_{m}(\psi(y), y)}{\partial y_{p}}
\end{array}\right]
$$

2.5. Some intuition for derivatives computed using the implicit function theorem. To see the intuition of equation 24 , take the total derivative of ϕ_{i} in equation 23 with respect to y_{j} as follows

$$
\begin{align*}
\phi_{i}\left(\psi_{1}(y), \psi_{2}(y), \cdots, \psi_{m}(y), y\right) & =0 \\
\frac{\partial \phi_{i}}{\partial \psi_{1}} \frac{\partial \psi_{1}}{\partial y_{j}}+\frac{\partial \phi_{i}}{\partial \psi_{2}} \frac{\partial \psi_{2}}{\partial y_{j}}+\cdots+\frac{\partial \phi_{i}}{\partial \psi_{m}} \frac{\partial \psi_{m}}{\partial y_{j}}+\frac{\partial \phi_{i}}{\partial y_{j}} & =0 \tag{29}
\end{align*}
$$

and then move $\frac{\partial \phi_{i}}{\partial y_{j}}$ to the right hand side of the equation. Then perform a similar task for the other equations to obtain m equations in the m partial derivatives, $\frac{\partial x_{i}}{\partial y_{j}}=\frac{\partial \psi_{i}}{\partial y_{j}}$

For the case of only one implicit equation 24 reduces to

$$
\begin{equation*}
\sum_{k=1}^{m} \frac{\partial \phi(\psi(y), y)}{\partial x_{k}} \frac{\partial \psi_{k}(y)}{\partial y_{j}}=-\frac{\partial \phi(\psi(y), y)}{\partial y_{j}} \tag{30}
\end{equation*}
$$

If there is only one equation, we can solve for only one of the x variables in terms of the other x variables and the p y variables and obtain only one implicit derivative.

$$
\begin{equation*}
\frac{\partial \phi(\psi(y), y)}{\partial x_{k}} \frac{\partial \psi_{k}(y)}{\partial y_{j}}=-\frac{\partial \phi(\psi(y), y)}{\partial y_{j}} \tag{31}
\end{equation*}
$$

which can be rewritten as

$$
\begin{equation*}
\frac{\partial \psi_{k}(y)}{\partial y_{j}}=\frac{-\frac{\partial \phi(\psi(y), y)}{\partial y_{j}}}{\frac{\partial \phi(\psi(y), y)}{\partial x_{k}}} \tag{32}
\end{equation*}
$$

This is more or less the same as equation 4.

If there are only two variables, x_{1} and x_{2} where x_{2} is now like y_{1}, we obtain

$$
\begin{gather*}
\frac{\partial \phi\left(\psi_{1}\left(x_{2}\right), x_{2}\right)}{\partial x_{1}} \frac{\partial \psi_{1}\left(x_{2}\right)}{\partial x_{2}}=-\frac{\partial \phi\left(\psi_{1}\left(x_{2}\right), x_{2}\right)}{\partial x_{2}} \\
\Rightarrow \frac{\partial x_{1}}{\partial x_{2}}=\frac{\partial \psi_{1}\left(x_{2}\right)}{\partial x_{2}}=\frac{-\frac{\partial \phi\left(\psi_{1}\left(x_{2}\right), x_{2}\right)}{\partial x_{2}}}{\frac{\partial \phi\left(\psi_{1}\left(x_{2}\right), x_{2}\right)}{\partial x_{1}}} \tag{33}
\end{gather*}
$$

which is like the example in section 1.2.1 where ϕ takes the place of f .

2.6. Examples.

2.6.1. One implicit equation with three variables.

$$
\begin{equation*}
\phi\left(x_{1}^{0}, x_{2}^{0}, y^{0}\right)=0 \tag{34}
\end{equation*}
$$

The implicit function theorem says that we can solve equation 34 for x_{1}^{0} as a function of x_{2}^{0} and y^{0}, i.e.,

$$
\begin{equation*}
x_{1}^{0}=\psi_{1}\left(x_{2}^{0}, y^{0}\right) \tag{35}
\end{equation*}
$$

and that

$$
\begin{equation*}
\phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right)=0 \tag{36}
\end{equation*}
$$

The theorem then says that

$$
\begin{align*}
\frac{\partial \phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right)}{\partial x_{1}} \frac{\partial \psi_{1}}{\partial x_{2}} & =\frac{-\partial \phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right)}{\partial x_{2}} \\
\Rightarrow \frac{\partial \phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right)}{\partial x_{1}} \frac{\partial x_{1}\left(x_{2}, y\right)}{\partial x_{2}} & =-\frac{\partial \phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right)}{\partial x_{2}} \tag{37}\\
\Rightarrow \frac{\partial x_{1}\left(x_{2}, y\right)}{\partial x_{2}} & =\frac{-\frac{\partial \phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right)}{\partial x_{2}}}{\frac{\partial \phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right)}{\partial x_{1}}}
\end{align*}
$$

2.6.2. Production function example.

$$
\begin{array}{r}
\phi\left(x_{1}^{0}, x_{2}^{0}, y^{0}\right)=0 \\
y^{0}-f\left(x_{1}^{0}, x_{2}^{0}\right)=0 \tag{38}
\end{array}
$$

The theorem says that we can solve the equation for x_{1}^{0}.

$$
\begin{equation*}
x_{1}^{0}=\psi_{1}\left(x_{2}^{0}, y^{0}\right) \tag{39}
\end{equation*}
$$

It is also true that

$$
\begin{align*}
\phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right) & =0 \\
y-f\left(\psi_{1}\left(x_{2}, y\right), x_{2}\right) & =0 \tag{40}
\end{align*}
$$

Now compute the relevant derivatives

$$
\begin{align*}
& \frac{\partial \phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right)}{\partial x_{1}}=-\frac{\partial f\left(\psi_{1}\left(x_{2}, y\right), x_{2}\right)}{\partial x_{1}} \tag{41}\\
& \frac{\partial \phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right)}{\partial x_{2}}=-\frac{\partial f\left(\psi_{1}\left(x_{2}, y\right), x_{2}\right)}{\partial x_{2}}
\end{align*}
$$

The theorem then says that

$$
\begin{align*}
\frac{\partial x_{1}\left(x_{2}, y\right)}{\partial x_{2}} & =-\left[\frac{\frac{\partial \phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right)}{\partial x_{2}}}{\frac{\partial \phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right)}{\partial x_{1}}}\right] \\
& =-\left[\frac{-\frac{\partial f\left(\psi_{1}\left(x_{2}, y\right), x_{2}\right)}{\partial x_{2}}}{-\frac{\partial f\left(\psi_{1}\left(x_{2}, y\right), x_{2}\right)}{\partial x_{1}}}\right] \tag{42}\\
& =-\frac{\frac{\partial f\left(\psi_{1}\left(x_{2}, y\right), x_{2}\right)}{\partial x_{2}}}{\frac{\partial f\left(\psi_{1}\left(x_{2}, y\right), x_{2}\right)}{\partial x_{1}}}
\end{align*}
$$

2.7. General example with two equations and three variables. Consider the following system of equations

$$
\begin{align*}
& \phi_{1}\left(x_{1}, x_{2}, y\right)=3 x_{1}+2 x_{2}+4 y=0 \tag{43}\\
& \phi_{2}\left(x_{1}, x_{2}, y\right)=4 x_{1}+x_{2}+y=0
\end{align*}
$$

The Jacobian is given by

$$
\left[\begin{array}{ll}
\frac{\partial \phi_{1}}{\partial x_{1}} & \frac{\partial \phi_{1}}{\partial x_{2}} \tag{44}\\
\frac{\partial \partial_{2}}{\partial x_{1}} & \frac{\partial \partial_{2}}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{ll}
3 & 2 \\
4 & 1
\end{array}\right]
$$

We can solve system 43 for x_{1} and x_{2} as functions of y. Move y to the right hand side in each equation.

$$
\begin{array}{r}
3 x_{1}+2 x_{2}=-4 y \\
4 x_{1}+x_{2}=-y \tag{45b}
\end{array}
$$

Now solve equation 45 b for x_{2}

$$
\begin{equation*}
x_{2}=-y-4 x_{1} \tag{46}
\end{equation*}
$$

Substitute the solution to equation 46 into equation 45 a and simplify

$$
\begin{align*}
3 x_{1}+2\left(-y-4 x_{1}\right) & =-4 y \\
\Rightarrow 3 x_{1}-2 y-8 x_{1} & =-4 y \\
\Rightarrow-5 x_{1} & =-2 y \tag{47}\\
\Rightarrow x_{1}=\frac{2}{5} y & =\psi_{1}(y)
\end{align*}
$$

Substitute the solution to equation 47 into equation 46 and simplify

$$
\begin{align*}
& x_{2}=-y-4\left[\frac{2}{5} y\right] \\
& \Rightarrow x_{2}=-\frac{5}{5} y-\frac{8}{5} y \tag{48}\\
&=-\frac{13}{5} y=\psi_{2}(y)
\end{align*}
$$

If we substitute these expressions for x_{1} and x_{2} into equation 43 we obtain

$$
\begin{align*}
\left.\phi_{1}\left(\frac{2}{5} y,-\frac{13}{5} y, y\right)\right) & =3\left[\frac{2}{5} y\right]+2\left[-\frac{13}{5} y\right]+4 y \\
& =\frac{6}{5} y-\frac{26}{5} y+\frac{20}{5} y \tag{49}\\
& =-\frac{20}{5} y+\frac{20}{5} y=0
\end{align*}
$$

and

$$
\begin{align*}
\left.\phi_{2}\left(\frac{2}{5} y,-\frac{13}{5} y, y\right)\right) & =4\left[\frac{2}{5} y\right]+\left[-\frac{13}{5} y\right]+y \\
& =\frac{8}{5} y-\frac{13}{5} y+\frac{5}{5} y \tag{50}\\
& =\frac{13}{5} y-\frac{13}{5} y=0
\end{align*}
$$

Furthermore

$$
\begin{align*}
\frac{\partial \psi_{1}}{\partial y} & =\frac{2}{5} \\
\frac{\partial \psi_{2}}{\partial y} & =-\frac{13}{5} \tag{51}
\end{align*}
$$

We can solve for these partial derivatives using equation 24 as follows

$$
\begin{align*}
& \frac{\partial \phi_{1}}{\partial x_{1}} \frac{\partial \psi_{1}}{\partial y}+\frac{\partial \phi_{1}}{\partial x_{2}} \frac{\partial \psi_{2}}{\partial y}=\frac{-\partial \phi_{1}}{\partial y} \tag{52a}\\
& \frac{\partial \phi_{2}}{\partial x_{1}} \frac{\partial \psi_{1}}{\partial y}+\frac{\partial \phi_{2}}{\partial x_{2}} \frac{\partial \psi_{2}}{\partial y}=\frac{-\partial \phi_{2}}{\partial y} \tag{52b}
\end{align*}
$$

Now substitute in the derivatives of ϕ_{1} and ϕ_{2} with respect to $\mathrm{x}_{1}, \mathrm{x}_{2}$, and y .

$$
\begin{align*}
& 3 \frac{\partial \psi_{1}}{\partial y}+2 \frac{\partial \psi_{2}}{\partial y}=-4 \tag{53a}\\
& 4 \frac{\partial \psi_{1}}{\partial y}+1 \frac{\partial \psi_{2}}{\partial y}=-1 \tag{53b}
\end{align*}
$$

Solve equation 53 b for $\frac{\partial \psi_{2}}{\partial y}$

$$
\begin{equation*}
\frac{\partial \psi_{2}}{\partial y}=-1-4 \frac{\partial \psi_{1}}{\partial y} \tag{54}
\end{equation*}
$$

Now substitute the answer from equation 54 into equation 53 a

$$
\begin{align*}
3 \frac{\partial \psi_{1}}{\partial y}+2\left(-1-4 \frac{\partial \psi_{1}}{\partial y}\right) & =-4 \\
\Rightarrow 3 \frac{\partial \psi_{1}}{\partial y}-2-8 \frac{\partial \psi_{1}}{\partial y} & =-4 \\
\Rightarrow-5 \frac{\partial \psi_{1}}{\partial y} & =-2 \tag{55}\\
\Rightarrow \frac{\partial \psi_{1}}{\partial y} & =\frac{2}{5}
\end{align*}
$$

If we substitute equation 55 into equation 54 we obtain

$$
\begin{align*}
\frac{\partial \psi_{2}}{\partial y} & =-1-4 \frac{\partial \psi_{1}}{\partial y} \\
\Rightarrow \frac{\partial \psi_{2}}{\partial y} & =-1-4\left(\frac{2}{5}\right) \tag{56}\\
& =\frac{-5}{5}-\frac{8}{5}=-\frac{13}{5}
\end{align*}
$$

We could also do this by inverting the matrix.
2.7.1. Profit maximization example 1. Consider the system in equation 18 . We can solve this system of m implicit equations for all m of the x variables as functions of the p independent (y) variables. Specifically, we can solve the two equations for x_{1} and x_{2} as functions of p, w_{1}, and w_{2}, i.e., $x_{1}=\psi_{1}\left(p, w_{1}, w_{2}\right)$ and x_{2} $=\psi_{2}\left(\mathrm{p}, \mathrm{w}_{1}, \mathrm{w}_{2}\right)$. We can also find $\frac{\partial x_{1}}{\partial p}$ and $\frac{\partial x_{2}}{\partial p}$, that is $\left(\frac{\partial \psi_{i}}{\partial p}\right)$, from the following two equations derived from equation 18 which is repeated here.

$$
\begin{gather*}
\phi_{1}\left(x_{1}, x_{2}, p, w_{1}, w_{2}\right)=(0.4) p x_{1}^{-0.6} x_{2}^{0.2}-w_{1}=0 \\
\phi_{2}\left(x_{1}, x_{2}, p, w_{1}, w_{2}\right)=(0.2) p x_{1}^{0.4} x_{2}^{-0.8}-w_{2}=0 \\
{\left[(-0.24) p x_{1}^{-1.6} x_{2}^{0.2}\right] \frac{\partial x_{1}}{\partial p}+\left[(0.08) p x_{1}^{-0.6} x_{2}^{-0.8}\right] \frac{\partial x_{2}}{\partial p}=-(0.4) x_{1}^{-0.6} x_{2}^{0.2}} \tag{57}\\
{\left[(0.08) p x_{1}^{-0.6} x_{2}^{-0.8}\right] \frac{\partial x_{1}}{\partial p}+\left[(-0.16) p x_{1}^{0.4} x_{2}^{-1.8}\right] \frac{\partial x_{2}}{\partial p}=-(0.2) x_{1}^{0.4} x_{2}^{-0.8}}
\end{gather*}
$$

We can write this in matrix form as

$$
\left[\begin{array}{cc}
(-0.24) p x_{1}^{-1.6} x_{2}^{0.2} & (0.08) p x_{1}^{-0.6} x_{2}^{-0.8} \tag{58}\\
(0.08) p x_{1}^{-0.6} x_{2}^{-0.8} & (-0.16) p x_{1}^{0.4} x_{2}^{-1.8}
\end{array}\right]\left[\begin{array}{l}
\frac{\partial x_{1}}{\partial p} \\
\frac{\partial x_{2}}{\partial p}
\end{array}\right]=\left[\begin{array}{l}
-(0.4) x_{1}^{-0.6} x_{2}^{0.2} \\
-(0.2) x_{1}^{0.4} x_{2}^{-0.8}
\end{array}\right]
$$

2.7.2. Profit maximization example 2. Let the production function for a firm by given by

$$
\begin{equation*}
y=14 x_{1}+11 x_{2}-x_{1}^{2}-x_{2}^{2} \tag{59}
\end{equation*}
$$

Profit for the firm is given by

$$
\begin{align*}
\pi & =p y-w_{1} x_{1}-w_{2} x_{2} \\
& =p\left(14 x_{1}+11 x_{2}-x_{1}^{2}-x_{2}^{2}\right)-w_{1} x_{1}-w_{2} x_{2} \tag{60}
\end{align*}
$$

The first order conditions for profit maximization imply that

$$
\begin{align*}
\pi & =14 p x_{1}+11 p x_{2}-p x_{1}^{2}-p x_{2}^{2}-w_{1} x_{1}-w_{2} x_{2} \\
\frac{\partial \pi}{\partial x_{1}}=\phi_{1} & =14 p-2 p x_{1}-w_{1}=0 \tag{61}\\
\frac{\partial \pi}{\partial x_{2}}=\phi_{1} & =11 p-2 p x_{2}-w_{2}=0
\end{align*}
$$

We can solve the first equation for x_{1} as follows

$$
\begin{align*}
\frac{\partial \pi}{\partial x_{1}} & =14 p-2 p x_{1}-w_{1}=0 \\
\Rightarrow 2 p x_{1} & =14 p-w_{1} \\
\Rightarrow x_{1} & =\frac{14 p-w_{1}}{2 p} \tag{62}\\
& =7-\frac{w_{1}}{2 p}
\end{align*}
$$

In a similar manner we can find x_{2} from the second equation

$$
\begin{align*}
\frac{\partial \pi}{\partial x_{2}} & =11 p-2 p x_{2}-w_{2}=0 \\
\Rightarrow 2 p x_{2} & =11 p-w_{2} \\
\Rightarrow x_{2} & =\frac{11 p-w_{2}}{2 p} \tag{63}\\
& =5.5-\frac{w_{2}}{2 p}
\end{align*}
$$

We can find the derivatives of x_{1} and x_{2} with respect to $\mathrm{p}, \mathrm{w}_{1}$ and w_{2} directly as follows:

$$
\begin{align*}
x_{1} & =7-\frac{1}{2} w_{1} p^{-1} \\
x_{2} & =5.5-\frac{1}{2} w_{2} p^{-1} \\
\frac{\partial x_{1}}{\partial p} & =\frac{1}{2} w_{1} p^{-2} \\
\frac{\partial x_{1}}{\partial w_{1}} & =-\frac{1}{2} p^{-1} \\
\frac{\partial x_{1}}{\partial w_{2}} & =0 \tag{64}\\
\frac{\partial x_{2}}{\partial p} & =\frac{1}{2} w_{2} p^{-2} \\
\frac{\partial x_{2}}{\partial w_{2}} & =-\frac{1}{2} p^{-1} \\
\frac{\partial x_{2}}{\partial w_{2}} & =0
\end{align*}
$$

We can also find these derivatives using the implicit function theorem. The two implicit equations are

$$
\begin{align*}
\phi_{1}\left(x_{1}, x_{2}, p, w_{1}, w_{2}\right) & =14 p-2 p x_{1}-w_{1}=0 \tag{65}\\
\phi_{2}\left(x_{1}, x_{2} p, w_{1}, w_{2}\right) & =11 p-2 p x_{2}-w_{2}=0
\end{align*}
$$

First we check the Jacobian of the system. It is obtained by differentiating ϕ_{1} and ϕ_{2} with respect to x_{1} and x_{2} as follows

$$
J=\left[\begin{array}{ll}
\frac{\partial \phi_{1}}{\partial x_{1}} & \frac{\partial \phi_{1}}{\partial x_{2}} \tag{66}\\
\frac{\partial \phi_{2}}{\partial x_{1}} & \frac{\partial \phi_{2}}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
-2 p & 0 \\
0 & -2 p
\end{array}\right]
$$

The determinant is $4 \mathrm{p}^{2}$ which is positive. Now we have two equations we can solve using the implicit function theorem. The theorem says

$$
\begin{equation*}
\sum_{k=1}^{m} \frac{\partial \phi_{i}(g(y), y)}{\partial x_{k}} \frac{\partial g_{k}(y)}{\partial y_{j}}=-\frac{\partial \phi_{i}(\psi(y), y)}{\partial y_{j}}, i=1,2, \cdots \tag{67}
\end{equation*}
$$

For the case of two equations we obtain

$$
\begin{align*}
& \frac{\partial \phi_{1}}{\partial x_{1}} \frac{\partial x_{1}}{\partial p}+\frac{\partial \phi_{1}}{\partial x_{2}} \frac{\partial x_{2}}{\partial p}=-\frac{\partial \phi_{1}}{\partial p} \tag{68}\\
& \frac{\partial \phi_{2}}{\partial x_{1}} \frac{\partial x_{1}}{\partial p}+\frac{\partial \phi_{2}}{\partial x_{2}} \frac{\partial x_{2}}{\partial p}=-\frac{\partial \phi_{2}}{\partial p}
\end{align*}
$$

We can write this in matrix form as follows

$$
\left[\begin{array}{ll}
\frac{\partial \phi_{1}}{\partial x_{1}} & \frac{\partial \phi_{1}}{\partial x_{2}} \tag{69}\\
\frac{\partial \phi_{2}}{\partial x_{1}} & \frac{\partial \phi_{2}}{\partial x_{2}}
\end{array}\right]\left[\begin{array}{l}
\frac{\partial x_{1}}{\partial p} \\
\frac{\partial x_{2}}{\partial p}
\end{array}\right]=\left[\begin{array}{l}
-\frac{\partial \phi_{1}}{\partial p} \\
-\frac{\partial \phi_{2}}{\partial p}
\end{array}\right]
$$

Solving for $\frac{\partial x_{1}}{\partial p}$ and $\frac{\partial x_{2}}{\partial p}$ we obtain

$$
\left[\begin{array}{l}
\frac{\partial x_{1}}{\partial p} \tag{70}\\
\frac{\partial x_{2}}{\partial p}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial \phi_{1}}{x_{1}} & \frac{\partial \phi_{1}}{\partial x_{2}} \\
\frac{\partial \phi_{2}}{\partial x_{1}} & \frac{\partial \phi_{2}}{\partial x_{2}}
\end{array}\right]^{-1}\left[\begin{array}{l}
-\frac{\partial \phi_{1}}{\partial p} \\
-\frac{\partial \phi_{2}}{\partial p}
\end{array}\right]
$$

We can compute the various partial derivatives of ϕ as follows

$$
\begin{align*}
\phi_{1}\left(x_{1}, x_{2}, p, w_{1}, w_{2}\right) & =14 p-2 p x_{1}-w_{1}=0 \\
\frac{\partial \phi_{1}}{\partial x_{1}} & =-2 p \\
\frac{\partial \phi_{1}}{\partial x_{2}} & =0 \\
\frac{\partial \phi_{1}}{\partial p} & =14-2 x_{1} \\
\phi_{2}\left(x_{1}, x_{2} p, w_{1}, w_{2}\right) & =11 p-2 p x_{2}-w_{2}=0 \tag{71}\\
\frac{\partial \phi_{2}}{\partial x_{1}} & =-2 p \\
\frac{\partial \phi_{2}}{\partial x_{2}} & =0 \\
\frac{\partial \phi_{1}}{\partial p} & =11-2 x_{2}
\end{align*}
$$

Now writing out the system we obtain for the case at hand we obtain

$$
\left[\begin{array}{l}
\frac{\partial x_{1}}{\partial p} \tag{72}\\
\frac{\partial x_{2}}{\partial p}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial \phi_{1}}{\partial x_{1}} & \frac{\partial \phi_{1}}{\partial x_{2}} \\
\frac{\partial \phi_{2}}{\partial x_{1}} & \frac{\partial \phi_{2}}{\partial x_{2}}
\end{array}\right]^{-1}\left[\begin{array}{l}
-\frac{\partial \phi_{1}}{\partial p} \\
-\frac{\partial \phi_{2}}{\partial p}
\end{array}\right]
$$

Now substitute in the elements of the inverse matrix

$$
\left[\begin{array}{c}
\frac{\partial x_{1}}{\partial p} \tag{73}\\
\frac{\partial x_{2}}{\partial p}
\end{array}\right]=\left[\begin{array}{cc}
-2 p & 0 \\
0 & -2 p
\end{array}\right]^{-1}\left[\begin{array}{l}
2 x_{1}-14 \\
2 x_{2}-11
\end{array}\right]
$$

If we then invert the matrix we obtain

$$
\begin{align*}
{\left[\begin{array}{l}
\frac{\partial x_{1}}{\partial p} \\
\frac{\partial x_{2}}{\partial p}
\end{array}\right] } & =\left[\begin{array}{cc}
-\frac{1}{2 p} & 0 \\
0 & -\frac{1}{2 p}
\end{array}\right]\left[\begin{array}{c}
2 x_{1}-14 \\
2 x_{2}-11
\end{array}\right] \tag{74}\\
& =\left[\begin{array}{c}
\frac{7-x_{1}}{5.5 \frac{p}{x_{2}}} \\
p
\end{array}\right]
\end{align*}
$$

Given that

$$
\begin{align*}
& x_{1}=7-\frac{1}{2} w_{1} p^{-1} \\
& x_{2}=5.5-\frac{1}{2} w_{2} p^{-1} \tag{75}
\end{align*}
$$

we obtain

$$
\begin{align*}
\frac{\partial x_{1}}{\partial p} & =\frac{7-x_{1}}{p} \\
& =\frac{7-\left(7-\frac{1}{2} w_{1} p^{-1}\right)}{p} \\
& =\frac{1}{2} w_{1} p^{-2} \\
\frac{\partial x_{2}}{\partial p} & =\frac{5.5-x_{2}}{p} \tag{76}\\
& =\frac{5.5-\left(5.5-\frac{1}{2} w_{2} p^{-1}\right)}{p} \\
& =\frac{1}{2} w_{2} p^{-2}
\end{align*}
$$

which is the same as before.
2.7.3. Profit maximization example 3. Verify the implicit function theorem derivatives $\frac{\partial x_{1}}{\partial w_{1}}, \frac{\partial x_{1}}{\partial w_{2}}, \frac{\partial x_{2}}{\partial w_{1}}, \frac{\partial x_{2}}{\partial w_{2}}$ for the profit maximization example 2.
2.7.4. Profit maximization example 4. A firm sells its output into a perfectly competitive market and faces a fixed price p. It hires labor in a competitive labor market at a wage w, and rents capital in a competitive capital market at rental rate r. The production is $f(L, K)$. The production function is strictly concave. The firm seeks to maximize its profits which are

$$
\begin{equation*}
\pi=p f(L, K)-w L-r K \tag{77}
\end{equation*}
$$

The first-order conditions for profit maximization are

$$
\begin{align*}
& \pi_{L}=p f_{L}\left(L^{*}, K^{*}\right)-w=0 \\
& \pi_{K}=p f_{K}\left(L^{*}, K^{*}\right)-r=0 \tag{78}
\end{align*}
$$

This gives two implicit equations for K and L. The second order conditions are

$$
\begin{equation*}
\frac{\partial^{2} \pi}{\partial L^{2}}\left(L^{*}, K^{*}\right)<0, \quad \frac{\partial^{2} \pi}{\partial L^{2}} \frac{\partial^{2} \pi}{\partial K^{2}}-\left[\frac{\partial^{2} \pi}{\partial L \partial K}\right]^{2}>0 \text { at }\left(L^{*}, K^{*}\right) \tag{79}
\end{equation*}
$$

We can compute these derivatives as

$$
\begin{gather*}
\frac{\partial^{2} \pi}{\partial L^{2}}=\frac{\partial\left(p f_{L}\left(L^{*}, K^{*}\right)-w\right)}{\partial L}=p F_{L L} \\
\frac{\partial^{2} \pi}{\partial K^{2}}=\frac{\partial\left(p f_{K}\left(L^{*}, K^{*}\right)-r\right)}{\partial L}=p F_{K K} \tag{80}\\
\frac{\partial^{2} \pi}{\partial L \partial K}=\frac{\partial\left(p f_{L}\left(L^{*}, K^{*}\right)-w\right)}{\partial K}=p F_{K L}
\end{gather*}
$$

The first of the second order conditions is satisfied by concavity of f. We then write the second condition as

$$
\begin{align*}
D & =\left|\begin{array}{cc}
p f_{L L} & p f_{L K} \\
p f_{K L} & p f_{K K}
\end{array}\right|>0 \\
& \Rightarrow p^{2}\left|\begin{array}{cc}
f_{L L} & f_{L K} \\
f_{K L} & f_{K K}
\end{array}\right|>0 \tag{81}\\
& \Rightarrow p^{2}\left(f_{L L} f_{K K}-f_{K L} f_{L K}\right)>0
\end{align*}
$$

The expression is positive or at least non-negative because f is assumed to be strictly concave.
Now we wish to determine the effects on input demands, L^{*} and K^{*}, of changes in the input prices. Using the implicit function theorem in finding the partial derivatives with respect to w , we obtain for the first equation

$$
\begin{array}{r}
\pi_{L L} \frac{\partial L^{*}}{\partial w}+\pi_{L K} \frac{\partial K^{*}}{\partial w}+\pi_{L w}=0 \\
\Rightarrow p f_{L L} \frac{\partial L^{*}}{\partial w}+p f_{K L} \frac{\partial K^{*}}{\partial w}-1=0 \tag{82}
\end{array}
$$

For the second equation we obtain

$$
\begin{align*}
\pi_{K L} \frac{\partial L^{*}}{\partial w}+\pi_{K K} \frac{\partial K^{*}}{\partial w}+\pi_{K w} & =0 \\
\Rightarrow p f_{K L} \frac{\partial L^{*}}{\partial w}+p f_{K K} \frac{\partial K^{*}}{\partial w} & =0 \tag{83}
\end{align*}
$$

We can write this in matrix form as

$$
\left[\begin{array}{ll}
p f_{L L} & p f_{L K} \tag{84}\\
p f_{K L} & p f_{K K}
\end{array}\right]\left[\begin{array}{l}
\partial L^{*} / \partial w \\
\partial K^{*} / \partial w
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Using Cramer's rule, we then have the comparative-statics results

$$
\begin{align*}
& \frac{\partial L^{*}}{\partial w}=\frac{\left|\begin{array}{ll}
1 & p f_{L K} \\
0 & p f_{K K}
\end{array}\right|}{D}=\frac{p f_{K K}}{D} \tag{85}\\
& \frac{\partial K^{*}}{\partial w}=\frac{\left|\begin{array}{ll}
p f_{L L} & 1 \\
p f_{K L} & 0
\end{array}\right|}{D}=-\frac{p f_{K L}}{D}
\end{align*}
$$

The sign of the first is negative because $\mathrm{f}_{K K}<0$ and $\mathrm{D}>0$ from the second-order conditions. Thus, the demand curve for labor has a negative slope. However, in order to sign the effect of a change in the wage rate on the demand for capital, we need to know the sign of $f_{K L}$, the effect of a change in the labor input
on the marginal product of capital. We can derive the effects of a change in the rental rate of capital in a similar way.
2.7.5. Profit maximization example 5. Let the production function be Cobb-Douglas of the form $\mathrm{y}=\mathrm{L}^{\alpha} \mathrm{K}^{\beta}$. Find the comparative-static effects $\partial \mathrm{L}^{*} / \partial \mathrm{w}$ and $\partial \mathrm{K}^{*} / \partial \mathrm{w}$. Profits are given by

$$
\begin{align*}
\pi & =p f(L, K)-w L-r K \\
& =p L^{\alpha} K^{\beta}-w L-r K \tag{86}
\end{align*}
$$

The first-order conditions are for profit maximization are

$$
\begin{align*}
\pi_{L} & =\alpha p L^{\alpha-1} K^{\beta}-w=0 \\
\pi_{K} & =\beta p L^{\alpha} K^{\beta-1}-r=0 \tag{87}
\end{align*}
$$

This gives two implicit equations for K and L . The second order conditions are

$$
\begin{equation*}
\frac{\partial^{2} \pi}{\partial L^{2}}\left(L^{*}, K^{*}\right)<0, \quad \frac{\partial^{2} \pi}{\partial L^{2}} \frac{\partial^{2} \pi}{\partial K^{2}}-\left[\frac{\partial^{2} \pi}{\partial L \partial K}\right]^{2}>0 \text { at }\left(L^{*}, K^{*}\right) \tag{88}
\end{equation*}
$$

We can compute these derivatives as

$$
\begin{align*}
\frac{\partial^{2} \pi}{\partial L^{2}} & =\alpha(\alpha-1) p L^{\alpha-2} K^{\beta} \\
\frac{\partial^{2} \pi}{\partial K^{2}} & \equiv \beta(\beta-1) p L^{\alpha} K^{\beta-2} \tag{89}\\
\frac{\partial^{2} \pi}{\partial L \partial K} & =\alpha \beta p L^{\alpha-1} K^{\beta-1}
\end{align*}
$$

The first of the second order conditions is satisfied as long as $\alpha, \beta<1$. We can write the second condition as

$$
D=\left|\begin{array}{cc}
\alpha(\alpha-1) p L^{\alpha-2} K^{\beta} & \alpha \beta p L^{\alpha-1} K^{\beta-1} \tag{90}\\
\alpha \beta p L^{\alpha-1} K^{\beta-1} & \beta(\beta-1) p L^{\alpha} K^{\beta-2}
\end{array}\right|>0
$$

We can simplify D as follows

$$
\begin{align*}
D & =\left|\begin{array}{cc}
\alpha(\alpha-1) p L^{\alpha-2} K^{\beta} & \alpha \beta p L^{\alpha-1} K^{\beta-1} \\
\alpha \beta p L^{\alpha-1} K^{\beta-1} & \beta(\beta-1) p L^{\alpha} K^{\beta-2}
\end{array}\right| \\
& =p^{2}\left|\begin{array}{cc}
\alpha(\alpha-1) L^{\alpha-2} K^{\beta} & \alpha \beta L^{\alpha-1} K^{\beta-1} \\
\alpha \beta L^{\alpha-1} K^{\beta-1} & \beta(\beta-1) L^{\alpha} K^{\beta-2}
\end{array}\right| \tag{91}\\
& =p^{2}\left[\alpha \beta(\alpha-1)(\beta-1) L^{\alpha-2} K^{\beta} L^{\alpha} K^{\beta-2}-\alpha^{2} \beta^{2} L^{2 \alpha-2} K^{2 \beta-2}\right] \\
& =p^{2}\left[\alpha \beta L^{\alpha-2} K^{\beta} L^{\alpha} K^{\beta-2}((\alpha-1)(\beta-1)-\alpha \beta)\right] \\
& =p^{2}\left[\alpha \beta L^{\alpha-2} K^{\beta} L^{\alpha} K^{\beta-2}(\alpha \beta-\beta-\alpha+1-\alpha \beta)\right] \\
& =p^{2}\left[\alpha \beta L^{\alpha-2} K^{\beta} L^{\alpha} K^{\beta-2}(1-\alpha-\beta)\right]
\end{align*}
$$

The condition is then that

$$
\begin{equation*}
D=p^{2} \alpha \beta L^{2 \alpha-2} K^{2 \beta-2}(1-\alpha-\beta)>0 \tag{92}
\end{equation*}
$$

This will be true if $\alpha+\beta<1$.

Now we wish to determine the effects on input demands, L^{*} and K^{*}, of changes in the input prices. Using the implicit function theorem in finding the partial derivatives with respect to W , we obtain for the first equation

$$
\begin{array}{r}
\pi_{L L} \frac{\partial L^{*}}{\partial w}+\pi_{L K} \frac{\partial K^{*}}{\partial w}+\pi_{L w}=0 \\
\Rightarrow \alpha(\alpha-1) p L^{\alpha-2} K^{\beta} \frac{\partial L^{*}}{\partial w}+\alpha \beta p L^{\alpha-1} K^{\beta-1} \frac{\partial K^{*}}{\partial w}-1=0 \tag{93}
\end{array}
$$

For the second equation we obtain

$$
\begin{align*}
\pi_{K L} \frac{\partial L^{*}}{\partial w}+\pi_{K K} \frac{\partial K^{*}}{\partial w}+\pi_{K w} & =0 \tag{94}\\
\Rightarrow \alpha \beta p L^{\alpha-1} K^{\beta-1} \frac{\partial L^{*}}{\partial w}+\beta(\beta-1) p L^{\alpha} K^{\beta-2} & =0
\end{align*}
$$

We can write this in matrix form as

$$
\left[\begin{array}{cc}
\alpha(\alpha-1) p L^{\alpha-2} K^{\beta} & \alpha \beta p L^{\alpha-1} K^{\beta-1} \tag{95}\\
\alpha \beta p L^{\alpha-1} K^{\beta-1} & \beta(\beta-1) p L^{\alpha} K^{\beta-2}
\end{array}\right]\left[\begin{array}{l}
\partial L^{*} / \partial w \\
\partial K^{*} / \partial w
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Using Cramer's rule, we then have the comparative-statics results

$$
\begin{align*}
& \frac{\partial L^{*}}{\partial w}=\frac{\left|\begin{array}{cc}
1 & \alpha \beta p L^{\alpha-1} K^{\beta-1} \\
0 & \beta(\beta-1) p L^{\alpha} K^{\beta-2}
\end{array}\right|}{D}=\frac{\beta(\beta-1) p L^{\alpha} K^{\beta-2}}{D} \tag{96}\\
& \frac{\partial K^{*}}{\partial w}=\frac{\left|\begin{array}{cc}
\alpha(\alpha-1) p L^{\alpha-2} K^{\beta} & 1 \\
\alpha \beta p L^{\alpha-1} K^{\beta-1} & 0
\end{array}\right|}{D}=\frac{-\alpha \beta p L^{\alpha-1} K^{\beta-1}}{D}
\end{align*}
$$

The sign of the first of is negative because $p \beta(\beta-1) L^{\alpha} K^{\beta-2}<0(\beta<1)$, and $\mathrm{D}>0$ by the second order conditions. The cross partial derivative $\frac{\partial K^{*}}{\partial w}$ is also less than zero because $p \alpha \beta L^{\alpha-1} K^{\beta-1}>0$ and $\mathrm{D}>0$. So, for the case of a two-input Cobb-Douglas production function, an increase in the wage unambiguously reduces the demand for capital.

3. TANGENTS TO $\phi\left(x_{1}, x_{2}, \ldots,\right)=c$ and Properties of the Gradient

3.1. Direction numbers.

A direction in \Re^{2} is determined by an ordered pair of two numbers (a, b), not both zero, called direction numbers. The direction corresponds to all lines parallel to the line through the origin $(0,0)$ and the point (a, b). The direction numbers (a, b) and the direction numbers (ra, rb) determine the same direction, for any nonzero r .

A direction in \Re^{n} is determined by an ordered n -tuple of numbers $\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right)$, not all zero, called direction numbers. The direction corresponds to all lines parallel to the line through the origin $(0,0, \ldots, 0)$ and the point $\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right)$. The direction numbers $\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right)$ and the direction numbers $\left(r x_{1}^{0}, r x_{2}^{0}, \ldots, r x_{n}^{0}\right)$ determine the same direction, for any nonzero r . If pick an r in the following way.

$$
\begin{equation*}
|r|=\frac{1}{\sqrt{\left(x_{1}^{0}\right)^{2}+\left(x_{2}^{0}\right)^{2}+\ldots+\left(x_{n}^{0}\right)^{2}}}=\frac{1}{\left|x^{0}\right|} \tag{97}
\end{equation*}
$$

then

$$
\begin{align*}
\cos \gamma_{1}= & \frac{x_{1}^{0}}{\sqrt{\left(x_{1}^{0}\right)^{2}+\left(x_{2}^{0}\right)^{2}+\ldots+\left(x_{n}^{0}\right)^{2}}} \\
\cos \gamma_{2}= & \frac{x_{2}^{0}}{\sqrt{\left(x_{1}^{0}\right)^{2}+\left(x_{2}^{0}\right)^{2}+\ldots+\left(x_{n}^{0}\right)^{2}}} \tag{98}\\
& \vdots \\
\cos \gamma_{n}= & \frac{x_{n}^{0}}{\sqrt{\left(x_{1}^{0}\right)^{2}+\left(x_{2}^{0}\right)^{2}+\ldots+\left(x_{n}^{0}\right)^{2}}}
\end{align*}
$$

where γ_{j} is the angle of the vector running through the origin and the point $\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right)$ with the x_{j} axis. With this choice of r, the direction numbers (ra,rb) are just the cosines of the angles that the line makes with the positive x_{1}, x_{2}, \ldots and x_{n} axes. These angles $\gamma_{1}, \gamma_{2}, \ldots$ are called the direction angles, and their cosines $\left(\cos \left[\gamma_{1}\right], \cos \left[\gamma_{2}\right], \ldots\right)$ are called the direction cosines of that direction. See figure 1 . They satisfy

$$
\cos ^{2}\left[\gamma_{1}\right]+\cos ^{2}\left[\gamma_{2}\right]+\ldots+\cos ^{2}\left[\gamma_{n}\right]=1
$$

Figure 1. Direction numbers as cosines of vector angles with the respective axes

From equation 98, we can also write

$$
\begin{align*}
x^{0} & =\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right)=\left(\left|x^{0}\right| \cos \left[\gamma_{1}\right],\left|x^{0}\right| \cos \left[\gamma_{2}\right], \ldots,\left|x^{0}\right| \cos \left[\gamma_{n}\right)\right. \\
& =\left|x^{0}\right|\left(\cos \left[\gamma_{1}\right], \cos \left[\gamma_{2}\right], \ldots, \cos \left[\gamma_{n}\right]\right) \tag{99}
\end{align*}
$$

Therefore

$$
\begin{equation*}
\frac{1}{\left|x^{0}\right|} x^{0}=\left(\cos \left[\gamma_{1}\right], \cos \left[\gamma_{2}\right], \ldots, \cos \left[\gamma_{n}\right]\right) \tag{100}
\end{equation*}
$$

which says that the direction cosines of x^{0} are the components of the unit vector in the direction of x^{0}.

Theorem 3. Ift is the angle between the vectors \vec{a} abd \vec{b}, then

$$
\begin{equation*}
a \cdot b=|a||b| \cos \theta \tag{101}
\end{equation*}
$$

3.2. Planes in \Re^{n}.

3.2.1. Planes through the origin. A plane through the origin in \Re^{n} is given implicitly by the equation

$$
\begin{align*}
p^{\prime} x & =0 \\
\rightarrow p_{1} x_{1}+p_{2} x_{2}+\ldots+p_{n} x_{n} & =0 \tag{102}
\end{align*}
$$

3.2.2. More general planes in \Re^{n}. A plane in \Re^{n} through the point $\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right)$ is given implicitly by the equation

$$
\begin{align*}
p^{\prime}\left(x-x^{0}\right) & =0 \\
\rightarrow p_{1}\left(x_{1}-x_{1}^{0}\right)+p_{2}\left(x_{2}-x_{2}^{0}\right)+\ldots+p_{n}\left(x_{n}-x_{n}^{0}\right) & =0 \tag{103}
\end{align*}
$$

We say that the vector p is orthogonal to the vector $\left(x-x^{0}\right)$ or

$$
\left[\begin{array}{llll}
p_{1} & p_{2} & \ldots & p_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1}-x_{1}^{0} \tag{104}\\
x_{2}-x_{2}^{0} \\
\vdots \\
x_{n}-x_{n}^{0}
\end{array}\right]=0
$$

The coefficients $\left[\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{n}\right]$ are the direction numbers of a line L passing through the point x^{0} or alternatively they are the coordinates of a point on a line through the origin that is parallel to L . If p_{1} is equal to -1 , we can write equation 104 as follows

$$
\begin{equation*}
x_{1}-x_{1}^{0}=p_{2}\left(x_{2}-x_{2}^{0}\right)+p_{3}\left(x_{2}-x_{3}^{0}\right)+\ldots+p_{n}\left(x_{n}-x_{n}^{0}\right) \tag{105}
\end{equation*}
$$

3.3. The general equation for a tangent hyperplane.

Theorem 4. Suppose $D^{1} \subset \Re^{n}$ is open, $\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right) \in D^{1}, \phi: D^{1} \rightarrow \Re^{1}$ is continuously differentiable, and $D \phi\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right) \neq 0$. Suppose $\phi\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right)=c$ Then consider the level surface of the function $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\phi\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right)=c$. Denote this level service by $M=\phi^{-1}(\{c\})$ which consists all all values of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ such that $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c$. Then the tangent hyperplane at $\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right)$ of M is given by

$$
\begin{equation*}
T_{x^{0}} M=\left\{x \in \Re^{n}: D \phi\left(x^{0}\right)\left(x-x^{0}\right)=0\right\} \tag{106}
\end{equation*}
$$

that is $\nabla \phi\left(x^{0}\right)$ is nomal to the tangent hyperplane.

Proof. Because $D \phi\left(x^{0}\right) \neq 0$, we may assume without loss of generality that $\frac{\partial \phi}{\partial x_{1}}\left(x^{0}\right) \neq 0$. Apply the implicit function theorem (Theorem 1) to the function $\phi-c$. We then know that the level set can be expressed as a graph of the function $x_{1}=\psi_{1}\left(x_{2}, x_{3}, \ldots, x_{n}\right)$ for some continuous function ψ_{1}. Now the tangent plane to the graph $\mathrm{x}_{1}=\psi_{1}\left(x_{2}, x_{3}, \ldots, x_{n}\right)$ at the point $\mathrm{x}^{0}=\left[\psi_{1}\left(x_{2}^{0}, x_{3}^{0}, \ldots, x_{n}^{0}\right), x_{2}^{0}, x_{3}^{0}, \ldots x_{n}^{0}\right]$ is the graph of the gradient $\mathrm{D} \psi_{1}\left(\mathrm{x}_{2}^{0}, \mathrm{x}_{3}^{0}, \ldots, \mathrm{x}_{n}^{0}\right)$ translated so that it passes through x^{0}. Using equation 105 where $\frac{\partial \psi_{1}}{\partial x_{k}}\left(x_{2}^{0}, x_{3}^{0}, \ldots, x_{n}^{0}\right)$ are the direction numbers we obtain

$$
\begin{equation*}
x_{1}-x_{1}^{0}=\sum_{k=2}^{n} \frac{\partial \psi_{1}}{\partial x_{k}}\left(x_{2}^{0}, x_{3}^{0}, \ldots, x_{n}^{0}\right)\left(x_{k}-x_{k}^{0}\right) \tag{107}
\end{equation*}
$$

Now make the substitution from equation 4 in equation 107 to obtain

$$
\begin{align*}
x_{1}-x_{1}^{0} & =\sum_{k=2}^{n}-\left(\frac{\frac{\partial \phi\left(\psi_{1}\left(x_{2}^{0}, x_{3}^{0}, \ldots, x_{n}^{0}\right), x_{2}^{0}, x_{3}^{0}, \ldots, x_{n}^{0}\right)}{\partial x_{k}}}{\frac{\partial \phi\left(\psi_{1}\left(x_{2}^{0}, x_{3}^{0}, \ldots, x_{n}^{0}\right), x_{2}^{0}, x_{3}^{0}, \ldots, x_{n}^{0}\right)}{\partial x_{1}}}\right)\left(x_{k}-x_{k}^{0}\right) \\
& =\sum_{k=2}^{n}-\left(\frac{\frac{\partial \phi\left(x^{0}\right)}{\partial x_{k}}}{\frac{\partial \phi\left(x^{0}\right)}{\partial x_{1}}}\right)\left(x_{k}-x_{k}^{0}\right) \tag{108}
\end{align*}
$$

Rearrange equation 108 to obtain

$$
\begin{equation*}
\sum_{k=2}^{n} \frac{\partial \phi\left(x^{0}\right)}{\partial x_{k}}\left(x_{k}-x_{k}^{0}\right)+\frac{\partial \phi\left(x^{0}\right)}{\partial x_{1}}\left(x_{1}-x_{1}^{0}\right)=D \phi\left(x^{0}\right)\left(x-x^{0}\right)=0 \tag{109}
\end{equation*}
$$

3.4. Example. Consider a function

$$
\begin{equation*}
y=f\left(x_{1}, x_{2}, \cdots, x_{n}\right) \tag{110}
\end{equation*}
$$

evaluated at the point $\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right)$

$$
\begin{equation*}
y^{0}=f\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right) \tag{111}
\end{equation*}
$$

The equation of the hyperplane tangent to the surface at this point is given by

$$
\begin{align*}
&\left(y-y^{0}\right)=\frac{\partial f}{\partial x_{1}}\left(x_{1}-x_{1}^{0}\right)+\frac{\partial f}{\partial x_{2}}\left(x_{2}-x_{2}^{0}\right)+\cdots+\frac{\partial f}{\partial x_{n}}\left(x_{n}-x_{n}^{0}\right) \\
& \Rightarrow \frac{\partial f}{\partial x_{1}}\left(x_{1}-x_{1}^{0}\right)+\frac{\partial f}{\partial x_{2}}\left(x_{2}-x_{2}^{0}\right)+\cdots+\frac{\partial f}{\partial x_{n}}\left(x_{n}-x_{n}^{0}\right)-\left(y-y^{0}\right)=0 \tag{112}\\
& \Rightarrow f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=f\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right)+\frac{\partial f}{\partial x_{1}}\left(x_{1}-x_{1}^{0}\right)+\frac{\partial f}{\partial x_{2}}\left(x_{2}-x_{2}^{0}\right)+\cdots+\frac{\partial f}{\partial x_{n}}\left(x_{n}-x_{n}^{0}\right)
\end{align*}
$$

where the partial derivatives $\frac{\partial f}{\partial x_{i}}$ are evaluated at $\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right)$. We can also write this as

$$
\begin{equation*}
f(x)-f\left(x^{0}\right)=\nabla f\left(x^{0}\right)\left(x-x^{0}\right) \tag{113}
\end{equation*}
$$

Compare this to the tangent equation with one variable

$$
\begin{align*}
y-f\left(x^{0}\right) & =f^{\prime}\left(x^{0}\right)\left(x-x^{0}\right) \\
\Rightarrow y & =f\left(x^{0}\right)+f^{\prime}\left(x^{0}\right)\left(x-x^{0}\right) \tag{114}
\end{align*}
$$

and the tangent plane with two variables

$$
\begin{align*}
y-f\left(x_{1}^{0}, x_{2}^{0}\right) & =\frac{\partial f}{\partial x_{1}}\left(x_{1}-x_{1}^{0}\right)+\frac{\partial f}{\partial x_{2}}\left(x_{2}-x_{2}^{0}\right) \\
\Rightarrow y & =f\left(x_{1}^{0}, x_{2}^{0}\right)+\frac{\partial f}{\partial x_{1}}\left(x_{1}-x_{1}^{0}\right)+\frac{\partial f}{\partial x_{2}}\left(x_{2}-x_{2}^{0}\right) \tag{115}
\end{align*}
$$

3.5. Vector functions of a real variable. Let $x_{1}, x_{2}, \ldots, x_{n}$ be functions of a variable t defined on an interval I and write

$$
\begin{equation*}
x(t)=\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right) \tag{116}
\end{equation*}
$$

The function $t \rightarrow x(t)$ is a transformation from R to R^{n} and is called a vector function of a real variable. As x runs through $I, x(t)$ traces out a set of points in n-space called a curve. In particular, if we put

$$
\begin{equation*}
x_{1}(t)=x_{1}^{0}+t a_{1}, x_{2}(t)=x_{2}^{0}+t a_{2}, \cdots, x_{n}(t)=x_{n}^{0}+t a_{n} \tag{117}
\end{equation*}
$$

the resulting curve is a straight line in n-space. It passes through the point $x^{0}=\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right)$ at t $=0$, and it is in the direction of the vector $a=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$. We can define the derivative of $\mathrm{x}(\mathrm{t})$ as

$$
\begin{equation*}
\frac{d x}{d t}=\dot{x}(t)=\left(\frac{d x_{1}(t)}{d t}, \frac{d x_{2}(t)}{d t}, \cdots, \frac{d x_{n}(t)}{d t}\right) \tag{118}
\end{equation*}
$$

If K is a curve in n -space traced out by $\mathrm{x}(\mathrm{t})$, then $\dot{x}(t)$ can be interpreted as a vector tangent to K at the point t.

3.6. Tangent vectors.

Consider the function $r(t)=\left(x_{1}(t), x_{2}(t), \cdots, x_{n}(t)\right)$ and its derivative $\dot{r}(t)=\left(\dot{x}_{1}(t), \dot{x}_{2}(t), \ldots, \dot{x}_{n}(t)\right)$. This function traces out a curve in R^{n}. We can call the curve K. For fixed t ,

$$
\begin{equation*}
\dot{r}(t)=\lim _{h \rightarrow 0} \frac{r(t+h)-r(t)}{h} \tag{119}
\end{equation*}
$$

If $\dot{r}(t) \neq 0$, then for $\mathrm{t}+\mathrm{h}$ close enough to t , the vector $\mathrm{r}(\mathrm{t}+\mathrm{h})-\mathrm{r}(\mathrm{t})$ will not be zero. As h tends to 0 , the quantity $r(t+h)-r(t)$ will come closer and closer to serving as a direction vector for the tangent to the curve at the point P. This can be seen in figure 2

It may be tempting to take this difference as approximation of the direction of the tangent and then take the limit

$$
\begin{equation*}
\lim _{h \rightarrow 0}[r(t+h)-r(t)] \tag{120}
\end{equation*}
$$

and call the limit the direction vector for the tangent. But the limit is zero and the zero vector has no direction. Instead we use the a vector that for small h has a greater length, that is we use

$$
\begin{equation*}
\frac{r(t+h)-r(t)}{h} \tag{121}
\end{equation*}
$$

For any real number h, this vector is parallel to $r(t+h)-r(t)$. Therefore its limit

$$
\begin{equation*}
\dot{r}(t)=\lim _{h \rightarrow 0} \frac{r(t+h)-r(t)}{h} \tag{122}
\end{equation*}
$$

can be taken as a direction vector for the tangent line.

Figure 2. Tangent to a Curve

3.7. Tangent lines, level curves and gradients. Consider the equation

$$
\begin{equation*}
f(x)=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=c \tag{123}
\end{equation*}
$$

which defines a level curve for the function f . Let $x^{0}=\left(x_{1}^{0}, x_{2}^{0}, \cdots, x_{n}^{0}\right)$ be a point on the surface and let $x(t)=\left(x_{1}(t), x_{2}(t), \cdots, x_{n}(t)\right)$ represent a differentiable curve K lying on the surface and passing through x^{0} at $\mathrm{t}=\mathrm{t}^{0}$. Because K lies on the surface, $\mathrm{f}[\mathrm{x}(\mathrm{t})]=\mathrm{f}\left[\mathrm{x}_{1}(\mathrm{t}), \mathrm{x}_{2}(\mathrm{t}), \ldots, \mathrm{x}_{n}(\mathrm{t})\right]=\mathrm{c}$ for all t . Now differentiate equation 123 with respect to t

$$
\begin{align*}
\frac{\partial f(x)}{\partial x_{1}} \frac{\partial x_{1}}{\partial t}+\frac{\partial f(x)}{\partial x_{2}} \frac{\partial x_{2}}{\partial t}+ & \cdots+\frac{\partial f(x)}{\partial x_{2}} \frac{\partial x_{2}}{\partial t} \tag{124}
\end{align*}=0
$$

Because the vector $\dot{x}(t)=\left(\dot{x}_{1}(t), \dot{x}_{2}(t), \cdots, \dot{x}_{n}(t)\right)$ has the same direction as the tangent to the curve K at x^{0}, the gradient of f is orthogonal to the curve K at the point x^{0}.

Theorem 5. Suppose $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is continuous and differentiable in a domain A and suppose that $x=\left(x_{1}, x_{2}\right.$, $\left.\ldots, x_{n}\right) \in A$. The gradient

$$
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)
$$

has the following properties at points x where $\nabla f(x) \neq 0$.
(i) $\nabla f(x)$ is orthogonal to the level surfaces $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c$.
(ii) $\nabla f(x)$ points in the direction of the steepest increase on f.
(iii) $\|\nabla f(x)\|$ is the value of the directional derivative in the direction of steepest increase.

REFERENCES

[1] Hadley, G. Linear Algebra. Reading, MA: Addison-Wesley, 1961.
[2] Sydsaeter, Knut. Topics in Mathematical Analysis for Economists. New York: Academic Press, 1981.

