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Chapter 6 Implicit function theorem

Chapter 5 has introduced us to the concept of manifolds of dimension m contained in Rn.
In the present chapter we are going to give the exact definition of such manifolds and also
discuss the crucial theorem of the beginnings of this subject. The name of this theorem is the
title of this chapter.

We definitely want to maintain the following point of view. An m-dimensional manifold
M ⊂ Rn is an object which exists and has various geometric and calculus properties which
are inherent to the manifold, and which should not depend on the particular mathematical
formulation we use in describing the manifold. Since our goal is to do lots of calculus on M ,
we need to have formulas we can use in order to do this sort of work. In the very discussion
of these methods we shall gain a clear and precise understanding of what a manifold actually
is.

We have already done this sort of work in the preceding chapter in the case of hypermani-
folds. There we discussed the intrinsic gradient and the fact that the tangent space at a point
of such a manifold has dimension n − 1 etc. We also discussed the version of the implicit
function theorem that we needed for the discussion of hypermanifolds. We noticed at that
time that we were really always working with only the local description of M , and that we
didn’t particularly care whether we were able to describe M with formulas that held for the
entire manifold. The same will be true in the present chapter.

A. Implicit presentation

We go back to the idea of implicitly defined manifolds introduced briefly on p. 5–26. That
is, we are going to have n−m real-valued functions on Rn, and the manifold will be (locally)
the intersection of level sets of these functions. Let us denote

k = n−m;

this integer is frequently called the codimension of M . We are assuming 1 ≤ m ≤ n − 1,
so that 1 ≤ k ≤ n − 1. (Hypermanifolds correspond to k = 1.) Let us call the “constraint”
functions g1, . . . , gk. Then we are proposing that M be described locally as the set of all points
x ∈ Rn satisfying the equations 




g1(x) = 0,
...

gk(x) = 0.

Of course, since we want to do calculus we assume at least that each gi ∈ C1. But more is
required. We must also have functions which are independent from one another. For instance,
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it would be ridiculous to think that the two equations

{
x2 + y2 + z2 = 1,

2x2 + 2y2 + 2z2 = 2,

define a 1-dimensional manifold in R3!
But more than the qualitative idea of independence is required. Even in the case n = 2 and

k = 1 we have seen that a single C1 equation g(x1, x2) = 0 does not necessarily give us a true
manifold; see p. 5–2. We have learned in general that significant treatment of hypermanifolds
(the case k = 1) requires that the gradient of the defining function be nonzero on M . The
proper extension of this to our more general situation is that the gradients ∇gi be linearly
independent on M . This is the quantitative statement of the independence of the defining
conditions.

Here are four examples with n = 3 and k = 2 which are in the spirit of p. 5–2, and are not
1-dimensional manifolds.
EXAMPLE 1. This is a rather artificial example, that comes from the example x3−y2 = 0
on p. 5–2. Namely, let {

g1(x, y, z) = z + x3 − y2,

g2(x, y, z) = z.

The set given as g1 = g2 = 0 is just the curve x3 − y2 = 0 in the x − y plane. This is not a
manifold. Though

∇g1 = (3x2,−2y, 1) and ∇g2 = (0, 0, 1)

are never zero, they are linearly dependent at the point (0, 0, 0).
EXAMPLE 2. A similar example, but one which is more geometrically significant, is given
by {

g1(x, y, z) = xy − z,

g2(x, y, z) = z.

The set g1 = g2 = 0 is just given as xy = 0 in the x− y plane, and this is the intersection of
the two coordinate axes. This is not a manifold, the origin being the “bad” point. Again,

∇g1 = (y, x,−1) and ∇g2 = (0, 0, 1)

are never zero, but are linearly dependent at the origin.
The nice surface g1 = 0 is called a hyperbolic paraboloid. The nice surface g2 = 0 is the

x− y plane. So this result shows that two nice surfaces may intersect in a bad “curve.”
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EXAMPLE 3. Here is a rather obvious example, but also it illustrates the point. Two
spheres in R3 may intersect in a single point. Thus the intersection is not a 1-dimensional
manifold.

Notice that it is geometrically clear that the two relevant gradients are linearly dependent at
the bad point.
EXAMPLE 4. Here is quite an elegant example. We form the intersection of a certain
sphere and right circular cylinder. Here are a “top” and 3-D view of the defining equations:

x2+y2+z2=1�
x2 + y2−y = 0. 

Notice that the gradients are

(2x, 2y, 2z) and (2x, 2y − 1, 0),

and these are linearly dependent at (0, 1, 0). So we expect “trouble” near (0, 1, 0). Indeed, if
we look at this intersection from far on the positive y axis and project onto the x − z plane
(like the tangent plane to the sphere and the cylinder), we see this equation:

x2 + (1− x2 − z2)−
√

1− x2 − z2 = 0;

solving this for x2,

1− z2 =
√

1− x2 − z2;

(1− z2)2 = 1− x2 − z2;

x2 = z2 − z4 :
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x

z

This picture shows clearly the nonmanifold nature of the intersection of these two surfaces.

PROBLEM 6–1. Show that the length of the intersection curve just discussed is
equal to

4

∫ 1

0

√
2− z2

1− z2
dz.

DEFINITION. Let 1 ≤ m ≤ n − 1 and let M ⊂ Rn be a set that we want to present as
an m-dimensional manifold. Let k = n − m. Suppose that in a neighborhood of any point
x0 ∈ M there are C1 functions g1, . . . , gk such that

(1) near x0, x ∈ M ⇐⇒ gi(x) = 0 for 1 ≤ i ≤ k,
and

(2) ∇g1(x0), . . . ,∇gk(x0) are linearly independent.
Then we say that M is implicitly presented.

This condition of linear independence can be put in the form of a Jacobian matrix, as on
p. 2–54. Namely, write the defining functions as a column vector

g(x) =




g1(x)
...

gk(x)


 ,

so that Rn g−→ Rk. Then

Dg(x) =




∂g1/∂x1 . . . ∂g1/∂xn
...

...
∂gk/∂x1 . . . ∂gk/∂xn




is the Jacobian matrix of g. It is a k × n matrix, and our condition is that at x = x0 its rows
are linearly independent.
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In the context of matrix algebra, the largest number of linearly independent rows of a
matrix A is called the row rank of A. Likewise for column rank . A relatively simple matrix
algebra theorem asserts that always row rank = column rank. This is proved in the next
section. Thus we would say that an m×n matrix has maximal rank if its row rank = column
rank = min(m,n).

In these terms our condition is that the row rank of Dg is k. As k < n, the condition can
be rephrased by saying that

Dg has maximal rank.

Moreover, it is not hard to see that if the matrix Dg(x0) has maximal rank, then so does
Dg(x) for all x in some neighborhood of x0. This is such simple yet important linear algebra
that we pause for a discussion of this material.

B. Rank

We work with matrices with real entries, although the identical things hold for matrices
with complex entries, or rational entries, etc.

DEFINITION. Let A be an m× n matrix and let the columns of A be a1, . . . , an ∈ Rm:

A = (a1 a2 . . . an).

The column rank of A is the dimension of the vector space spanned by the columns of A. This
vector space is called the column space of A. The row space and row rank are defined similarly.

We can now immediately prove the theorem alluded to above:

THEOREM. Row rank = column rank.

PROOF. Let ` denote the column rank of A. Then the column space has dimension `.
Therefore there exist ` vectors b1, . . . , b` ∈ Rm such that each aj is a linear combination of the
form

aj =
∑̀

k=1

ckjbk, 1 ≤ j ≤ n.

(By the way, the bk’s are linearly independent and thus the ckj’s are unique, but none of that
matters for the proof!) Rewrite these vector equations as equations for their ith components:

aij =
∑̀

k=1

bikckj, 1 ≤ i ≤ m.
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(We recognize this as a matrix product

A = B C.)

m× n m× k k × n

Now we simply reinterpret these equations as representing the rows of A:

(ai1, ai2, . . . , ain) =
∑̀

k=1

bik(ck1, ck2, . . . , ckn), 1 ≤ i ≤ m.

These equations show that the row space of A is spanned by the ` vectors (ck1, . . . , ckn). Thus
the row rank of A is no greater than `.

We have therefore proved that

row rank of A ≤ column rank of A.

Now just note that replacing A with At interchanges row rank and column rank.
QED

DEFINITION. rank(A) = column rank of A = row rank of A.

PROBLEM 6–2. Let A be a real m × n matrix. Prove that A has rank ≥ ` ⇐⇒
there exist rows numbered i1 < i2 < · · · < i` and columns numbered j1 < j2 < · · · < j`

such that the square matrix B with entries

bαβ = aiαjβ

has nonzero determinant.
(HINT: use the row rank to find ` rows which are linearly independent. Discard the other
rows to get an ` × n matrix A′ with row rank `. Now use the fact that A′ has column
rank `.)

PROBLEM 6–3. Prove that if the real m × n matrix A has rank ≥ `, then all real
m × n matrices whose entries are sufficiently close to those of A also have rank ≥ `. In
particular, if A has maximal rank, then all nearby matrices also have maximal rank.

PROBLEM 6–4. In the definition of Section A show that the second condition may
be replaced with
(2) ∇g1(x), . . . ,∇gk(x) are linearly independent for all x in some neighborhood of x0.
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PROBLEM 6–5. What connection is there among the numbers rank(A), rank(B),
and rank(AB)?

PROBLEM 6–6. Let A be an m× n matrix. Prove that the following conditions are
equivalent.
a. rank(A) = 1.
b. A = (aibj) where not all ai are zero and not all bj are zero.
c. A = BC where B is a nonzero m× 1 matrix and C is a nonzero 1× n matrix.

PROBLEM 6–7. Let a, b be nonzero vectors in Rn, written as n×1 matrices (column
vectors). Prove that the eigenvectors of the rank 1 matrix abt are the scalar multiples
of a together with the orthogonal complement of b, and that the eigenvalues are a • b,
0, . . . , 0.

PROBLEM 6–8. Continuing with Problem 6–7, prove that the characteristic poly-
nomial of abt is (−1)nλn−1(λ− a • b). (Cf. Problem 3–41.)

C. Implicit function theorem

We have already discussed a version of this theorem in Section 5E. That version pertained
to the case of hypermanifolds, in which k = 1 and there is just one function for which the
equation g(x) = 0 needs to be “solved.” The present situation calls for a direct generalization.
The hypothesis and conclusion are by now easy to guess, and the easy guess is correct.

THEOREM. Suppose 1 ≤ k ≤ n−1, and suppose Rn g−→ Rk is of class C1 in a neighborhood
of x0, and

g(x0) = 0.

Suppose the Jacobian matrix Dg(x0) has maximal rank (equal to k). Then matrix algebra
asserts that there are k columns of Dg(x0) which are linearly independent. For ease in writing,
suppose these are the last k columns: columns m + 1 through n. Write points in Rn in the
symbolic fashion of Rn = Rm × Rk as

x = (x1, . . . , xm; xm+1, . . . , xn)

= (x′; x′′).
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CONCLUSION: there are k uniquely determined functions

Rm ϕi−→ R, 1 ≤ i ≤ k,

of class C1 near the point x′0, such that for all x in some neighborhood of x0,

g(x) = 0 ⇐⇒ xm+i = ϕi(x
′) for 1 ≤ i ≤ k.

Moreover, the functions ϕi are as differentiable as g: if g is of class C`, then all ϕi are of
class C`.

The conclusion of this theorem asserts that we have succeeded in “solving” the system of
equations g(x) = 0 for k of the coordinates in terms of the other m coordinates. It’s again as
though we have k equations in k “unknowns” (xm+1, . . . , xn), which we are able to solve.

As mentioned already on p. 5–16, we do not prove this theorem in this course.
Its relevance is just as before: it is exactly the theorem we need to understand the manifold

M determined by the implicit presentation





g1(x) = 0,
...

gk(x) = 0.

The essential nature of this theorem is that it guarantees that the linear approximation
information contained in the Jacobian matrix Dg(x0) is decisive in describing the nonlinear
situation contained in the function g near x0, provided that the rank condition holds. The
prototype is the basic calculus situation y = f(x) in which we want to find an inverse function
x = f−1(y). If f is affine it’s elementary provided f ′ 6= 0. And if f ′ 6= 0, then we are
guaranteed a local solution x = f−1(y) exists, though we don’t have an explicit formula.

D. Results

We suppose that the manifold M ⊂ Rn satisfies everything required in Section B. We
are now in a position to reap the many wonderful benefits of the implicit function theorem
(“manifold” benefits).

TANGENT SPACE. We use the exact definition of Section 5F. Thus Tx0M is the set of all
γ′(0), for C1 curves lying in M with γ(0) = x0. The same sort of theorem as in Section 5F
gives the implicit representation of Tx0M . Namely,

h ∈ Tx0M ⇐⇒ ∇gi(x0) • h = 0 for all 1 ≤ i ≤ k.
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Since the normal vectors ∇gi(x0) are linearly independent, this shows that Tx0M is a vector
space of dimension m, as we would expect and desire.

INTRINSIC GRADIENT. If M
f−→ R is defined only on M , then as before we can prove

that there is a unique vector Hf(x0) in the tangent space Tx0M such that for all C1 curves γ
in M with γ(0) = x0,

d

dt
f(γ(t)) = Hf(x0) • γ′(0).

The other view point is that if Rn f−→ R is defined in the ambient space, then Hf(x0) is the
orthogonal projection of the ambient gradient ∇f(x0) onto the tangent space. That is, there
are unique scalars λ1, . . . , λk such that

Hf(x0) = ∇f(x0)−
k∑

i=1

λi∇gi(x0)

belongs to Tx0M .
Of course we continue to call Hf(x0) the intrinsic gradient of f with respect to the manifold

M .

LAGRANGE MULTIPLIERS. An intrinsic critical point of f is a point x0 ∈ M such that
Hf(x0) = 0. In other words, there exist scalars λ1, . . . , λk, known as Lagrange multipliers, such
that

∇f(x0) =
k∑

i=1

λi∇gi(x0).

In practice this works in the usual way. There are n + k “unknowns”: x1, . . . , xn; λ1, . . . , λk;
and there are n + k equations they have to satisfy — the n equations above together with the
k constraints 




g1(x) = 0,
...

gk(x) = 0.

PROBLEM 6–9. Find the intrinsic critical points of x4 + y4 + z4 on the manifold
x2 + y2 + z2 = 1, x + y + z = 1.

(Solution: First, we note that this is a 1-manifold: we can recognize it as a “small circle” on
the unit sphere containing the points î, ĵ, and k̂, or we can see that the gradients (2x, 2y, 2z)
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and (1, 1, 1) are linearly independent (since no point (s, s, s) belongs to the set). We may
therefore use Lagrange multipliers. After adjusting constants, we have





x3 = λ1x + λ2,

y3 = λ1y + λ2,

z3 = λ1z + λ2,

x2 + y2 + z2 = 1,

x + y + z = 1.

We already know x = y = z to be impossible. Thus one coordinate must differ from the other
two. We treat the case z 6= x and z 6= y. Then eliminate λ2 to obtain

{
x3 − z3 = λ1(x− z),

y3 − z3 = λ1(y − z).

Divide by x− z and y − z, respectively:

{
x2 + xz + z2 = λ1,

y2 + yz + z2 = λ1.

Subtract:

x2 − y2 + xz − yz = 0;

(x− y)(x + y + z) = 0;

x− y = 0.

Thus x = y. The constraints imply

{
2x2 + z2 = 1,

2x + z = 1.

Thus

2x2 + (1− 2x)2 = 1;

6x2 − 4x = 0;

x = 0 or 2/3.
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We thus find (0, 0, 1) and (2/3, 2/3,−1/3). By symmetry, the function has six intrinsic
critical points:

(1, 0, 0), (−1/3, 2/3, 2/3),

(0, 1, 0), (2/3,−1/3, 2/3),

(0, 0, 1), (2/3, 2/3,−1/3), .

The three on the left are maxima (f = 1) and the three on the right are minima
(f = 11/27).)

PROBLEM 6–10. Using the Lagrange method, find the intrinsic critical points of
the function f(x, y, z) = x on the “great circle” x2 + y2 + z2 = 1, x + y + z = 0.

(Solution: We have




1 = λ1x + λ2,

0 = λ1y + λ2,

0 = λ1z + λ2,

x2 + y2 + z2 = 1,

x + y + z = 0.

Thus subtraction gives 1 = λ1(x− y) = λ1(x− z). Thus λ1 6= 0 and we conclude y = z. The
constraints give x2 + 2y2 = 1, x = −2y. Thus 6y2 = 1 and we obtain two critical points:

± 1√
6
(−2, 1, 1). )

PROBLEM 6–11. Find the extreme values of the distance between the origin (0, 0, 0)
and points of the first octant portion of the curve

{
x + y + z = 4,

xyz = 2.
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PROBLEM 6–12. Consider the ellipse

E :
x2

1

a2
+

x2
2

b2
= 1

and the straight line
L : x1 + x2 = 1.

Find a necessary and sufficient condition on the semiaxes a and b such that E and L have
no points in common. Given this condition, find the minimum distance between points
of E and L. Do this by using Lagrange multipliers to find the minimum of the function

D(x1, x2, y1, y2) = (x1 − y1)
2 + (x2 − y2)

2,

where x and y are subject to the appropriate constraints.

PROBLEM 6–13. Continuing with the preceding problem, show that in addition
to the minimum, there is another intrinsic critical point of the function D. What is the
nature of this other critical point (minimum, local maximum, or saddle point)?

PROBLEM 6–14. Here is a generalization of Problem 6–12. Let A be an n × n
symmetric positive definite matrix and let u be a nonzero vector in Rn. Consider the
ellipsoid

E = {x ∈ Rn | Ax • x = 1}
and the hyperplane

L = {x ∈ Rn | u • x = 1}.
a. Prove that E ∩ L = ∅ ⇐⇒ A−1u • u < 1.
b. Find the minimum of ‖x− y‖ for x ∈ E, y ∈ L.

(HINT: principal axis theorem.)

PROBLEM 6–15. Let n ≥ 3 and find the maximum value of
∑n

i=1 x3
i on the sphere

‖x‖ = 1,
∑n

i=1 xi = 1.
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PROBLEM 6–16. (This problem is from Mathematical Intelligencer, vol 16, no. 4 (1994), p.8.)

A circle is inscribed in a face of a cube. Another circle is circumscribed about a neighboring
face of the cube. Find the least and greatest distances between the points of the circles.
Please be kind to the grader standardizing the cube to have length 2 and be centered at the origin with sides parallel to the coordinate axes:

(1,u,v) with u2+v2=2

2+y2=1(x,y,1) with x

PROBLEM 6–17*. Here is a problem from American Mathematical Monthly, Volume 101, Number 6, June -

July, 1994, proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada:
Determine the extreme values of

f(x, y, z, u, v, w) =
1

1 + x + u
+

1

1 + y + v
+

1

1 + z + w

where xyz = a3, uvw = b3, and x, y, z, u, v, w > 0.
Clearly, 0 < f < 3. The function f is defined on a 4-dimensional manifold M contained in R6. If you let x → 0, y → 0, u → ∞, v → ∞ on
this manifold, you see that f assumes values arbitrarily close to 0. Thus f does not attain a minimum on M ; rather, we say

inf
M

f = 0.

Also if you let x → 0, y → 0, u → 0, v → 0 on M , you see that f assumes values arbitrarily close to 2. Therefore,

2 ≤ sup
M

f ≤ 3.

Now here is my version of Klamkin’s problem:
1. Find all the intrinsic critical points of f on M .
2. Calculate sup

M
f .

3. Investigate whether or not f attains the value sup
M

f at some point of M .
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PROBLEM 6–18. Find all the intrinsic critical points of the function f(x) = x + y
on the manifold described intrinsically as x2 + y2 + z2 = 49 and xyz = 24. Also identify
the local nature of each of these intrinsic critical points.

Cartesian product of manifolds. The three preceding problems provide an illustration of
a very general construction of manifolds. In Problem 6–14, for instance, we are really dealing
with the Cartesian product

E × L = {(x, y) | x ∈ E, y ∈ L} ⊂ Rn × Rn.

Thus E × L is a manifold of dimension 2n − 2 contained in R2n, and the problem asks that

we consider the function R2n f−→ R defined by

f(x, y) = ‖x− y‖.

The general situation is quite easily understood. If Mi ⊂ Rni is a manifold of dimension
mi for i = 1, 2, then M1 × M2 is a manifold of dimension m1 + m2 in Rn1+n2 . We saw an
excellent example of these ideas in Section 5G where we introduced the flat torus.

E. Parametric presentation

We have seen many examples of this way of viewing a manifold. For instance, curves in

Rn were actually defined this way on p. 2–3: as continuous functions R f−→ Rn. The variable
t in the expression x = f(t) is often called a parameter . In terms of manifolds, we are more
interested in the image of f ,

M = {f(t) | t ∈ R},
and we need to make the usual sort of assumption that f is of class C1 and f ′(t) 6= 0.
Furthermore, f needs to be one-to-one in order to have just one parameter value for each
point of the curve. The fact that t ∈ R is what gives the image M its dimension of 1.

In the case of the tori of Section 5G, we have seen parametric presentations of each involving
two parameters. The geometric idea is quite clear in general. We have a one-to-one function

Rm f→ Rn,

where the functional relation may be expressed

x = F (t) = F (t1, . . . , tm).
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We are anticipating an image
M = {F (t) | t ∈ Rm}

which is an m-dimensional manifold. The idea is that the function F maps the “flat” parameter
space Rm in a “curvy” manner into Rn. The straight coordinate lines of Rm themselves are
transported to curves which form a kind of “curvilinear” grid on M :

We shall require an important condition to insure that this provides an actual smooth manifold.
That is, we require that the vectors in Rn given as

∂F

∂t1
, . . . ,

∂F

∂tm

be linearly independent. . . lest the tangent lines in the curvilinear grid be tangent to one
another.

The reasoning we have just given seems quite clear. If we imagine ti as varying while all
the other tj’s remain fixed, the function F (t) gives a curve from R into Rn, and the curve lies
in the manifold M . Thus its derivative ∂F/∂ti is tangent to M . Therefore if x0 = F (t0) is a
fixed point of M , then

∂F

∂t1
(t0), . . . ,

∂F

∂tm
(t0) ∈ Tx0M.
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We demand Tx0M be an m-dimensional space, and thus the assumption of linear independence
of the vectors ∂F/∂ti is quite natural.

EXAMPLE. Spherical coordinates on the unit sphere in R3. We begin with the usual
spherical coordinates for R3, which we describe with a sketch:

ϕ
r

r sin ϕ

(x, y, z)

θ

(x, y, 0)
x

z

y

The formulas are




x = r sin ϕ cos θ,

y = r sin ϕ sin θ,

z = r cos ϕ.

Here we leave out the z-axis in R3, and r is the norm of the vector (x, y, z); thus 0 < r < ∞.
We stress that 0 < ϕ < π only, but the usual polar coordinate θ is determined only up to
additive integer multiples of 2π.

Warning. Many books denote the norm r by ρ. What is more troublesome is that many
books, especially in physics, have the letters ϕ and θ interchanged. A little care needs to be
taken to make sure of the notation used in any material, and this is only a minor inconvenience.

The unit sphere M ⊂ R3 is of course described by the restriction r = 1. Therefore we
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obtain spherical coordinates ϕ, θ for the sphere itself, the formulas being of course




x = sin ϕ cos θ,

y = sin ϕ sin θ,

z = cos ϕ.

Besides the ambiguity in θ, the restriction 0 < ϕ < π leaves out the north pole (0, 0, 1) and the
south pole (0, 0,−1). The corresponding tangent vectors are the ϕ and θ partial derivatives,
respectively. Writing them as column vectors we have

∂F

∂ϕ
=




cos ϕ cos θ
cos ϕ sin θ
− sin ϕ


 and

∂F

∂θ
=



− sin ϕ sin θ
sin ϕ cos θ

0


 .

Notice that these vectors satisfy the relations
∥∥∥∥

∂F

∂ϕ

∥∥∥∥ = 1,

∥∥∥∥
∂F

∂θ

∥∥∥∥ = sin ϕ,
∂F

∂ϕ
• ∂F

∂θ
= 0.

Here’s a sketch:

F
ϕ

F
θ

x

R

z

y

Notice also that these vectors are indeed orthogonal to the normal vector




sin ϕ cos θ
sin ϕ sin θ

cos ϕ


 to

the surface (this was guaranteed to occur).
The spherical coordinate situation generalizes to Rn. This is easily accomplished by induc-

tion on n, the general step being just like the transition from R2 to R3. Thus suppose x ∈ Rn

is represented as x = (x′, xn), where x′ ∈ Rn−1 and xn ∈ R. Suppose that x′ 6= 0 and that we
already know how to represent x′ in spherical coordinates for Rn−1. As usual, let

r = ‖x‖.
Then

xn

r
=

xn√
‖x′‖2 + x2

n
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and thus this quotient is in the open interval (−1, 1). It is therefore equal to cos ϕn−2 for a
unique 0 < ϕn−2 < π. This is the “new” angle in the spherical coordinate system for Rn.
Then

‖x′‖2 = r2 − x2
n = r2 − r2 cos2 ϕn−2 = r2 sin2 ϕn−2,

so we have

‖x′‖ = r sin ϕn−2 > 0.

We then have the relevant angles ϕ1, . . . , ϕn−3, θ and formulas for x′, using its norm r sin ϕn−2.

PROBLEM 6–19. Show that points in R4 can be represented as





x1 = r sin ϕ2 sin ϕ1 cos θ,

x2 = r sin ϕ2 sin ϕ1 sin θ,

x3 = r sin ϕ2 cos ϕ1,

x4 = r cos ϕ2,

where 0 < ϕ1 < π, 0 < ϕ2 < π, 0 < r < ∞, and θ is determined up to integer multiples
of 2π. Show that the condition for x ∈ R4 to be so represented is simply x2

1 + x2
2 6= 0.

Show also that if F (r, ϕ1, ϕ2, θ) represents the above formulas, then the first order partial
derivatives are mutually orthogonal, and

∥∥∥∥
∂F

∂r

∥∥∥∥ = 1,

∥∥∥∥
∂F

∂ϕ2

∥∥∥∥ = r,

∥∥∥∥
∂F

∂ϕ1

∥∥∥∥ = r sin ϕ2,

∥∥∥∥
∂F

∂θ

∥∥∥∥ = r sin ϕ2 sin ϕ1.
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PROBLEM 6–20. Consider a curve R f−→ R3 of class C1, represented in spheri-
cal coordinates by naming the spherical coordinates of f(t) as r(t), ϕ(t), θ(t) (abuse of
notation). Prove that

‖f ′(t)‖ =

√
r′2 + r2ϕ′2 + r2 sin2ϕ θ′2.

This relation is often expressed symbolically as

(ds)2 = (dr)2 + r2(dϕ)2 + r2 sin2ϕ (dθ)2.

PROBLEM 6–21. What is the corresponding result for a polar coordinate represen-
tation of a curve in R2?
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PROBLEM 6–22. There is a particularly interesting class of curves on a sphere in
R3. Assume you are dealing with the unit sphere ‖x‖ = 1, so that the two angles ϕ, θ
serve as coordinates. Then of course

(ds)2 = (dϕ)2 + sin2ϕ (dθ)2.

Let 0 < α < π
2

be fixed and consider a curve on the sphere “going north” at a constant
angle α with the meridian. That is, if the curve is given as f(t),

f ′(t)
‖f ′(t)‖ • (− cos ϕ cos θ,− cos ϕ sin θ, sin ϕ) = cos α.

Such a curve is called a loxodrome.
a. Show that

ϕ′ = − cos α

√
ϕ′2 + sin2ϕ θ′2.

b. Show that
ϕ′ = ± cot α sin ϕ θ′.

c. Assume that ϕ′ < 0 (going north) and θ′ > 0 and solve the differential equation in
(b) to express θ as a function of ϕ.

d. Show that the loxodrome exists for −∞ < θ < ∞ and that its total length is π sec α.

As we mentioned just before the example, the parametric representation of M gives a
very nice understanding of the tangent space Tx0M . For if F (t0) = x0, then the vectors
∂F/∂ti(t0) are in Tx0M , an m-dimensional space. Thus the linear independence of these m
vectors guarantees the situation that every vector in Tx0M is a unique linear combination of
∂F/∂t1, . . . , ∂F/∂tm.

In Section C we discussed the implicit presentation of a manifold and the crucial role
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played by the Jacobian matrix of the defining function. The parametric representation we are
now considering has a corresponding Jacobian matrix. Namely, in properly understanding the

parameterizing function Rm f→ Rn we introduce the Jacobian matrix of F :

DF =




∂F1

∂t1
. . . ∂F1

∂tm
...

...
∂Fn

∂t1
. . . ∂Fn

∂tm


 .

It is the m columns of this matrix that are required to be linearly independent. Thus DF has
maximal rank.

In the notation of Section A, if M is also represented implicitly by Rn g−→ Rk as the set
of points satisfying g(x) = 0, we have

Rm f→ Rn g−→ Rk,

g ◦ F = 0.

Thus the chain rule says exactly that

Dg(x0)DF (t0) = 0.

k × n n×m

The implicit function theorem is once again important in the present context. It shows
that a parametric presentation of M generates (in theory) an explicit presentation. We still

work with the above notation Rm f→ Rn.
We then introduce the new function

Rm × Rn F̃−→ Rn

defined by

F̃ (t, x) = F (t)− x.

Note that F̃ (t0, x0) = 0. Also note that the Jacobian matrix DF̃ has the m + n columns,

∂F

∂t1
, . . . ,

∂F

∂tm
; −ê1, . . . ,−ên.

The first m of these are linearly independent, by hypothesis. A standard linear algebra
technique allows us to start with the vectors −ê1, . . . ,−ên, and replace some of them one at
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a time by all of ∂F/∂t1, . . . , ∂F/∂tm, and still have a basis for Rn. For ease in writing, let us
say that −ê1, . . . ,−êm have been replaced. Then the columns

∂F

∂t1
, . . . ,

∂F

∂tm
; −êm+1, . . . ,−ên

are a basis for Rn. Thus the implicit function theorem of Section C allows us to assert that
the equation

F (t)− x = 0

can locally be “solved” for t1, . . . , tm, xm+1, . . . , xn as functions of the other variables x1, . . . , xm.
In particular, we obtain near x0

x ∈ M ⇐⇒ xm+i = ϕi(x1, . . . , xm) for 1 ≤ i ≤ k.

(The theorem also guarantees that the parameters t1, . . . , tm are also functions of x1, . . . , xm,
but we don’t need that extra information here.) Thus the manifold is again represented
explicitly.

Here is how the above analysis works in the case of a parametrized surface M ⊂ R3. The
points of M might be represented as depending on parameters t1 and t2:





x = f(t1, t2),

y = g(t1, t2),

z = h(t1, t2).

(∗)

We would assume that the corresponding Jacobian matrix have rank 2. For instance, suppose
that

det

(
∂f
∂t1

∂f
∂t2

∂g
∂t1

∂g
∂t2

)
6= 0.

Then we could in principle locally solve the first two equations in (∗) to produce for points in
M , {

t1 = a(x, y),

t2 = b(x, y).

And then we have in turn

z = h (a(x, y), b(x, y)) ,

so that M is locally represented explicitly.
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F. The explicit bridge

This section consists primarily of observations about what we have already achieved for an
m-dimensional manifold M ⊂ Rn. We have thoroughly discussed both an implicit description
and a parametric description of M . A local explicit description presents M by giving n−m of
the coordinates of Rn as “explicit” functions of the other m coordinates. For instance, locally
we might have the presentation

x ∈ M ⇐⇒ xm+i = ϕi(x1, . . . , xm) for 1 ≤ i ≤ k = n−m.

This presentation is clearly both implicit and parametric, simultaneously. It is interesting
that to go from a general implicit or parametric presentation of M to the opposite kind, we
used the implicit function theorem in each case to find an explicit presentation. Thus all three
types of presentation of M are equivalent, at least in theory.

The phrase “in theory” is of course quite important, as we may not be able to solve the
equations in closed form, or we may not care to do so. The famous folium of Descartes is a
case in point. This is a one-dimensional manifold (except for one bad point) in R2. Its natural
and famous implicit presentation is this:

x3 + y3 = 3xy.

Notice the gradient of the defining function is (3x2 − 3y, 3y2 − 3x), and this is nonzero on M
except at the origin. Here’s a plot of the folium:

x

y

Notice the singular point (0,0).

In this example a “trick” produces a parameterization. Namely, consider the intersection
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of the curve with the line y = tx of slope t. Then

x3 + t3x3 = 3xtx.

Discounting the origin, we can divide by x2: x + t3x = 3t. Thus




x =
3t

1 + t3
,

y =
3t2

1 + t3
.

This formula makes sense for all t 6= −1 and produces all points on the folium of Descartes.
It is easy to check that the velocity vector

(
dx
dt

, dy
dt

)
is never 0. Thus for this manifold we

are able to go from implicit to parametric presentation without stopping to find an explicit
representation at all. This is quite fortunate, as solving x3 + y3 = 3xy for y as a function of
x, or solving x = 3t

1+t3
for t as a function of x are both tremendously difficult tasks, involving

the solution of cubic equations.

PROBLEM 6–23. The sketch shows that the folium of Descartes has a vertical
tangent at a point in the first quadrant.
a. Find this point by computing and using dx/dt.
b. Find this point by using Lagrange multipliers to find an intrinsic critical point of x

on the folium.

PROBLEM 6–24. Consider the “figure 8 curve” of Problem 2–6, and its polar
representation r2 = cos 2θ. Show that the length of this curve equals

2

∫ π/2

0

dt√
cos t

.

PROBLEM 6–25. Consider the “cardioid” given in polar coordinates as r = 1+cos θ.
Sketch this curve in the x− y plane and show that its length equals 8.

G. The derivative reconsidered

We can now give a brief discussion of a vast but easy generalization of the concept of
derivative. Suppose that we have two manifolds N and M and a function f from N to M :
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N is n-dimensional, N ⊂ Rq;
M is m-dimensional, M ⊂ Rp;

N
f−→ M.

As we want only to introduce the concepts, we assume that f is differentiable, without actually
giving the precise definition.

Then consider a point x0 ∈ N and the image y0 = f(x0). We have the two tangent spaces
at our disposal, Tx0N and Ty0M . If we think of these as tangent vectors of curves, then we
can see how f can be used to map Tx0N into Ty0M .

Namely, suppose h ∈ Tx0N . Then there is some curve R γ−→ Rq such that

γ(t) ∈ N for all t,

γ(0) = x0,

γ′(0) = h.

But then the composition f ◦ γ is a curve into M such that

f ◦ γ(0) = y0.

Thus its tangent vector

(f ◦ γ)′(0)

is a vector in Ty0M .

f

γ

f

h

γ

N

M
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DEFINITION. In the above situation, Df(x0) is the mapping from Tx0N to Ty0M given
by the formula

Df(x0)(γ
′(0)) = (f ◦ γ)′(0).

That’s the idea. Of course, we have not made this at all rigorous. We would have to
define the concept of differentiability of f and also would have to show that the definition of
Df(x0)(h) is independent of the choice of curve γ with γ′(0) = h. All of that can be done
quite readily, and it also follows that Df(x0) is a linear mapping from Tx0N to Ty0M .

Thus in a very precise sense Df(x0) represents an affine approximation to the original
mapping f .

By the way, a more standard notation is f∗(x0) = Df(x0), and f∗(x0) is said to “push
forward” tangent vectors.

The next problem is an easy exercise illustrating this concept.

PROBLEM 6–26. Consider a cartographer’s attempt to map a portion of the unit
sphere S(0, 1) ⊂ R3 onto a flat piece of paper R2:

S(0, 1)
f−→ R2.

Use standard spherical coordinates on S(0, 1) to write this in the form

f(sin ϕ cos θ, sin ϕ sin θ, cos ϕ) = (u(ϕ, θ), v(ϕ, θ)).

Prove that the linear map Df(x0, y0, z0) maps the orthonormal basis vectors as follows:

(cos ϕ0 cos θ0, cos ϕ0 sin θ0,− sin ϕ0) to (uϕ, vϕ)

and
(− sin θ0, cos θ0, 0) to csc ϕ0(uθ, vθ).
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PROBLEM 6–27. An interesting cartographic mapping is the gnomonic projection.
Here is one way to view it as a function from R2 to S(0, 1):

(x,1)

x

y

O

y =
(x, 1)

‖(x, 1)‖ =
(x, 1)√
‖x‖2 + 1

.

a. Show that the inverse of this mapping is given by

f(y) =

(
y1

y3

,
y2

y3

)
.

b. Show that the corresponding functions in the preceding problem are

u(ϕ, θ) = tan ϕ cos θ,

v(ϕ, θ) = tan ϕ sin θ.

c. Prove that every great circle on the sphere gets mapped to a straight line in R2.
(You can therefore imagine such a map might be useful in flying along great circle routes.)

H. Conformal mapping

We continue to consider a mapping N
f−→ M of one manifold into another, but now we

assume that the two manifolds have the same dimension. One thing that could be asked is
the question of what effect the mapping f has on angles. In particular, whether f preserves
angles.

This really comes down to a question about the derivative Df(x0), which is a linear
mapping from the tangent space Tx0N to Tf(x0)M . We shall assume that Df(x0) is invertible,
so that h 6= 0 =⇒ Df(x0)h 6= 0. Then the fact is that f preserves angles at x0 if and only if

Df(x0)h •Df(x0)h
′

‖Df(x0)h‖ ‖Df(x0)h′‖ =
h • h′

‖h‖ ‖h′‖
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for all nonzero vectors h, h′ ∈ Tx0N . This is of course due to the fact that the cosines of the
relevant angles are measured by the respective expressions.

To say the least, the verification of such an equation appears unwieldy. However some
elementary linear algebra comes to our rescue. To see the relevance of the following result,
notice that the linear mapping Df(x0) maps the vector space Tx0N into the vector space
Tf(x0)M and these two vector spaces have the same dimension. We can therefore choose
orthonormal basis for them and can thus represent Df(x0) by a square matrix. The following
theorem about n× n matrices is therefore just what we need.

THEOREM. Let A be a real invertible n × n matrix. Then the following conditions are
equivalent.

(1) A preserves angles.

(2) A preserves right angles.

(3) A is a positive scalar multiple of an orthogonal matrix.

(4) A maps some orthonormal basis of Rn to a nonzero scalar multiple of an orthnormal
basis.

PROOF. Of course, (1) is exactly the sort of condition we are interested in. In symbols, it
says that for any nonzero h and h′ ∈ Rn,

Ah • Ah′

‖Ah‖ ‖Ah′‖ =
h • h′

‖h‖ ‖h′‖ .

Our strategy is to prove that (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (1). All of these are
straightforward except for (2) =⇒ (3).

(1) =⇒ (2) is clear, as (2) means that h • h′ = 0 =⇒ Ah • Ah′ = 0.
(2) =⇒ (3) requires some calculation. If h, h′ are arbitrary nonzero vectors, then h is

orthogonal to

h′ − h′ • h

‖h‖2
h

(remember p. 1–14?), so (2) gives

Ah •
(

Ah′ − h′ • h

‖h‖2
Ah

)
= 0.

Thus

Ah • Ah′ =
h′ • h

‖h‖2
‖Ah‖2.
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Interchange h and h′:

Ah′ • Ah =
h • h′

‖h′‖2
‖Ah′‖2.

We conclude that

h′ • h

(‖Ah‖2

‖h‖2
− ‖Ah′‖2

‖h′‖2

)
= 0.

Therefore if h′ • h 6= 0,
‖Ah‖
‖h‖ =

‖Ah′‖
‖h′‖ .

In case h′ • h = 0, then we can use the equation we have just proved for the vectors h and
h + h′ and then also for the vectors h′ and h + h′, and conclude that it still holds. Thus, for
all nonzero h and h′ ∈ Rn,

‖Ah‖
‖h‖ =

‖Ah′‖
‖h′‖ .

Call this common ratio c. As A is invertible, c > 0. Thus

‖c−1Ah‖ = ‖h‖ for all h ∈ Rn.

According to Problem 4–20f, c−1A = Φ ∈ O(n). Thus A = cΦ and (3) is verified.
(3) =⇒ (4) is clear, for if {ϕ̂i} is an orthonormal basis, then so is {Φϕ̂i} for any Φ ∈ O(n).
(4) =⇒ (1). Let {ϕ̂i} be the particular orthonormal basis such that {cAϕ̂i} is also an

orthonormal basis. Let Φ and Ψ be the corresponding orthogonal matrices having those
columns:

Φ = (ϕ̂1 ϕ̂2 . . . ϕ̂n),

Ψ = c(Aϕ̂1 Aϕ̂2 . . . Aϕ̂n).

Then we have the matrix equation
Ψ = cAΦ,

so that
A = c−1ΨΦ−1.

Thus A is a scalar multiple of an orthogonal matrix and we conclude that A preserves angles.
QED

Now we return to our discussion of N
f−→ M . Our question about the preservation of angles

by f now is answered by the condition that at each x0 the derivative Df(x0) is a positive scalar
multiple of an “orthogonal matrix.” That is, according to Problem 4–20f, we need

‖Df(x0)h‖ = c(x0)‖h‖ for all h ∈ Tx0N.
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The local magnification factor c(x0) is of course allowed to vary with x0. Here is the summary

DEFINITION. Suppose N
f−→ M is a C1 map from an n-dimensional manifold N to an

n-dimensional manifold M . Then f is a conformal mapping if it preserves angles. That is, if
for every x ∈ N there corresponds a local magnification factor c(x) > 0 such that

‖Df(x)h‖ = c(x)‖h‖ for all h ∈ TxN.

For instance, a linear mapping from Rn to Rn has the form x → Ax for a certain n × n
matrix A. This mapping is conformal if and only if A is a positive scalar multiple of an
orthogonal matrix, and the magnification factor is that scalar.

In the general case the conformal function f will introduce some “distortion” in the way it
moves points of N to M . Though f distorts lengths, it leaves all angles exactly unchanged. If
it so happens that the local magnification factor c(x) is constant, then the mapping introduces
no distortion at all. In particular if c(x) = 1 for all x, we would even say that f is an isometry.

For example, the right circular cylinder x2 + y2 = a2 in R3 is locally isometric to R2. This
can of course be readily seen from a polar coordinate representation of the cylinder by defining

f(a cos θ, a sin θ, z) = (aθ, z), 0 < θ < 2π, −∞ < z < ∞.

Then

Df(a cos θ, a sin θ, z)(−a sin θ, a cos θ, 0) = (a, 0),

Df(a cos θ, a sin θ, z)(0, 0, 1) = (0, 1).

Thus Df maps the orthonormal basis (− sin θ, cos θ, 0), (0, 0, 1) (of the tangent space to the
cylinder) to the orthonormal basis ı̂, ̂ (of R2). The picture to keep in mind is that of cutting
a paper cylinder along a straight line parallel to its axis and unrolling it to make it flat.
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This mapping f is thus an isometry.

PROBLEM 6–28. Any right cylinder, circular or not, can be isometrically flattened.
Show this by using a curve γ in R2 which has unit speed and defining the cylinder to be
the set of points of the form

C = {(γ(t), z) | a < t < b, −∞ < z < ∞}.

The choice of C
f−→ R2 should now be clear.
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PROBLEM 6–29. A right circular cone can also be flattened isometrically (locally).
Show this by using a cone of the form shown here:

z = cot α
√

x2 + y2

α

z

(side view)

Use cylindrical coordinates for R3 so that the cone has the parametric representation





x = z tan α cos θ,

y = z tan α sin θ,

z = z.

Then “cut” the cone along θ = 0 and flatten it out into the form

αsin2π

with the mapping from the cone to R2:

f(z tan α cos θ, z tan α sin θ, z) = z sec α(cos(θ sin α), sin(θ sin α)),

Prove that f is an isometry.

PROBLEM 6–30. Consider the two points (3, 4, 5) and (4, 3, 5) on the cone z =√
x2 + y2. What is the smallest possible length of curves joining these two points and

lying entirely on the cone? (Use a calculator.)
[Answer: 1.41659. . . .] Notice that it’s greater than

√
2. Comment?



Implicit function theorem 33

Notice very particularly that this flattening of the cone preserves all angles. We are ex-
cluding the vertex, and, indeed, angles seem to be distorted there.

I. Examples of conformal mappings

We now present important classical instances of conformal mappings, all of which are
extremely important in many contexts.

1. Holomorphic functions

Surely the most basic possible situation is that of a function R2 f−→ R2. Both manifolds are
the Euclidean plane. Let us denote the Cartesian representation of f as

f(x, y) = (u(x, y), v(x, y)).

Then the derivative Df(x, y) maps the standard orthonormal basis as follows:

Df(x, y)̂ı = (ux, vx),

Df(x, y)̂ = (uy, vy).

Thus the condition that f be conformal is that the vectors (ux, vx) and (uy, vy) have the same
(nonzero) norm and be orthogonal:

u2
x + v2

x = u2
y + v2

y 6= 0,

uxuy + vxvy = 0.

If for example ux 6= 0, then we have uy = −vxvy/ux, so if we write t = vy/ux then we have

tux = vy,

uy = −tvx.

And then

u2
x + v2

x = t2v2
x + t2u2

x

= t2(u2
x + v2

x).

Thus 1 = t2 and we have two cases. If t = 1, then the condition is

{
∂u
∂x

= ∂v
∂y

,
∂u
∂y

= − ∂v
∂x

.
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These equations are known as the Cauchy − Riemann equations. They are surely the
most important partial differential equations in all of mathematics. A solution of them is said
to be a holomorphic function; rather, the corresponding complex-valued function

f(x + iy) = u(x, y) + iv(x, y)

is said to be holomorphic (or analytic). As we have seen, in case u2
x + u2

y 6= 0, f is also
conformal.

The other case t = −1 is entirely similar, the corresponding equations being ux = −vy,
uy = vx.

A good example is the function which represents the square of a complex number. As
(x + iy)2 = x2 + 2ixy − y2, we define

f(x, y) = (x2 − y2, 2xy).

This is seen to be holomorphic, with local magnification factor 2
√

x2 + y2. This mapping is
thus conformal except at the origin. Indeed, angles are doubled at the origin.

The study of holomorphic functions has been going on for centuries. In fact all universities
devote at least one entire semester to this subject, in courses titled “complex analysis,” or
“complex variables,” or “analytic functions,” etc. At Rice these come as either MATH 382 or
MATH 427. Both are highly recommended.

2. Inversion in a sphere

We have already looked at this in Problems 2–79, 80, 81. The function Rn f−→ Rn is given
by

f(x) =
x

‖x‖2
.

Its derivative is
Df(x) = ‖x‖−2I − 2‖x‖−4(xixj),

and we have the result
‖Df(x)h‖ = ‖x‖−2‖h‖.

Thus f is conformal with the local magnification factor ‖x‖−2.

PROBLEM 6–31. As a possible generalization, let Rn f−→ Rn be given in the form

f(x) = g(‖x‖)x.

Compute Df(x) and show that f is conformal ⇐⇒ g′(t) = 0 or g′(t) + 2g(t)/t = 0.
Conclude that g is constant or g(t) = ct−2.
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PROBLEM 6–32. We can perform inversion in any sphere. If the sphere is centered
at x0 and has radius R, the correct formula is

f(x) = x0 + R2 x− x0

‖x− x0‖2
.

Prove that the mapping is conformal. What is the local magnification factor?
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PROBLEM 6–33. Reflection across a “plane” in Rn is a somewhat simpler sort
of mapping than inversion in a sphere. Suppose the “plane” (really, hyperplane) to be
described as follows: let û be a unit vector in Rn and c ∈ R, and define

M = {x ∈ Rn|x • û = c}.

Schematic figure:

M

Then we map any x ∈ Rn to its “mirror image” f(x) with respect to M . That is, we
determine t ∈ R such that

f(x) = x + tû

f(x) + x

2
∈ M.

a. Prove that f(x) = x + 2(c− x • û)û.

b. Prove that
Df(x; h) = h− 2h • ûû.

c. Prove that f is conformal.

3. Mercator projection

This is a cartographic exercise coming from the desire to map a portion of the unit sphere
S(0, 1) ⊂ R3 in a certain way onto a sheet of paper R2, so that the meridians θ = constant get
mapped into equally spaced parallel lines and the mapping is conformal. Thus, using standard
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spherical coordinates for the sphere, we are led to S(0, 1)
f−→ R2 of the form

f(sin ϕ cos θ, sin ϕ sin θ, cos ϕ) = (θ, g(ϕ)),

where g is to be determined. Then we compute that the linear mapping Df has to transform
the corresponding unit tangent vectors as follows:

(cos ϕ cos θ, cos ϕ sin θ,− sin ϕ) 7−→ (0, g′(ϕ)),

(− sin θ, cos θ, 0) 7−→ csc ϕ (1, 0).

The resulting two vectors are orthogonal, so the condition for conformality is that they have
the same norm:

|g′(ϕ)| = csc ϕ.

PROBLEM 6–34. Assume that g increases as the north pole is approached (ϕ
decreases to 0) and that the equator ϕ = π

2
gets mapped to the θ-axis. Then show that

g(ϕ) = log(csc ϕ + cot ϕ) = log cot
ϕ

2
.

This formula gives the famous Mercator projection:

f(sin ϕ cos θ, sin ϕ sin θ, cos ϕ) = (θ, log cot
ϕ

2
).

PROBLEM 6–35. Show that the local magnification factor of the Mercator projection
is csc ϕ.

PROBLEM 6–36. Show that the loxodromes (Problem 6–22) on the sphere, which
are the curves that maintain a constant angle with the meridians, correspond to straight
lines under the Mercator projection.

This problem illustrates one navigational use of a Mercator projection. If you want to sail
from A to B on S(0, 1), use your Mercator map to locate A and B, connect them with a
straight line, then sail at that constant bearing. The resulting journey will of course be longer
than the great circle path.
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PROBLEM 6–37. The coordinates of Houston, Texas, are 29.97◦N latitude, 95.35◦W
longitude. The coordinates of Samara, Russia, are 53.23◦N and 50.17◦E. Assume the
earth is a ball with radius 3960 miles.
a. Find the great circle distance between these cities.
b. Find the “loxodromic distance” between them.

PROBLEM 6–38. Consider a “loxodromic” “triangle” on the unit sphere. Explain
what this should mean, and prove that the sum of the interior angles of such a “triangle”
equals π.
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4. Stereographic projection

In this cartographic exercise we again map

S(0, 1)
f−→ R2,

but now the desire is that the meridians θ = constant near the north pole themselves get
mapped to the straight lines θ = constant in a standard polar coordinate representation of
R2. Thus we have for an as yet unknown polar coordinate r(ϕ),

f(sin ϕ cos θ, sin ϕ sin θ, cos ϕ) = (r(ϕ) cos θ, r(ϕ) sin θ).

As we want the north pole to map to the origin, we assume r(0) = 0.

PROBLEM 6–39. Show that this mapping f is conformal ⇐⇒
dr

dϕ
= r csc ϕ.

Conclude that
r(ϕ) =

c

csc ϕ + cot ϕ

for some positive constant c.

PROBLEM 6–40. Take c = 1 in the preceding problem. Let points in S(0, 1) be
represented in Cartesian coordinates as y = (y1, y2, y3), and let

f(y) = (x1, x2).

Show that

x1 =
y1

1 + y3

,

x2 =
y2

1 + y3

.

The function f of this problem is called stereographic projection of the unit sphere onto
R2.
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PROBLEM 6–41. Stereographic projection provides a nice result concerning loxo-
dromes. Consider a loxodrome as described in Problem 6–22, described by the relation in
spherical coordinates,

θ cot α = log(csc ϕ + cot ϕ).

Using stereographic projection, this loxodrome becomes a curve in R2. Show that the
equation of this projected curve in the usual polar coordinates for R2 is

r = e−θ cot α.

This plane is called a logarithmic spiral.

REMARK. Martin Gardner’s delightful book, aha! Insight, Scientific American 1978, has
an interesting discussion in the Section “Payoff at the Poles.” Here’s a quotation from p. 43:
“Here is a different navigational problem that involves a fascinating curve on the sphere known
as a loxodrome or rhumb-line. . . . A loxodrome, plotted on a flat map, has different forms
depending on the type of map projection. On the familiar world map called the Mercator
projection, it is plotted as a straight line. Indeed, this is why a Mercator map is so useful to
navigators. . . . When a loxodrome is projected on a plane parallel to the equator and tangent
to a pole, it is an equiangular or logarithmic spiral.”

Notice that Martin Gardner’s discussion should have been more precise at the end, by
stating that the projection used is stereographic.
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PROBLEM 6–42. Here is a simple geometric way of defining stereographic projection.
Work with the unit sphere

S(0, 1) ⊂ Rn+1

and denote its points with Cartesian coordinates:

y = (y1, . . . , yn, yn+1) = (y′, yn+1),

where y′ ∈ Rn. We then set up a function from all of S(0, 1) except for the south pole
−ên+1 = (0,−1) to all of Rn by means of starting with y, constructing the straight
line determined by y and −ên+1, and finding its intersection with the “equatorial plane”
Rn × {0}:

y

−en+1

f(y)

(x,0)

S(0,1)

RRn

a. Prove that

x = f(y) =
y′

1 + yn+1

.

(This agrees with what we found earlier in case n = 2.
b. Prove that the inverse is

y = f−1(x) =

(
2x

1 + ‖x‖2
,

1− ‖x‖2

1 + ‖x‖2

)
.

c. Prove that f is conformal with local magnification factor (1+yn+1)
−1. (In computing

‖Df(y)h‖ remember that y • h = y′ • h′ + yn+1hn+1 = 0.)
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PROBLEM 6–43. Here is yet another way to analyze stereographic projection.
Consider the inversion mapping of Rn+1 with respect to the sphere S(−ên+1,

√
2) of radius√

2 centered at −ên+1:

f(y) = −ên+1 + 2
y + ên+1

‖y + ên+1‖2
, y ∈ Rn+1.

We know that f is a conformal mapping from Rn+1 to Rn+1. Prove that when restricted
to the unit sphere S(0, 1) f equals the stereographic projection of Problem 6–42.

PROBLEM 6–44. Sometimes it is convenient to alter the stereographic projection by
projecting onto a hyerplane other than the one we have been using. Continue to project
from the south pole −ên+1, but now project onto any hyerplane orthogonal to the vector
−ên+1. Denote the new hyerplane as M = {(x, a) | x ∈ Rn}, where a 6= −1. Let fa denote
the corresponding stereographic projection onto Rn.

n+1

a

−e

y

(f (y),a)

S(0,1)

M

Prove that fa is conformal by showing that fa = (a+1)f0. (The two most common choices
for a are 0 and 1.)

For obvious reasons there has been an enormous amount of work dedicated to conformal
mappings of portions of S(0, 1) ⊂ R3 into the Euclidean plane R2. You should be aware that
no such map can exist with no distortion.
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PROBLEM 6–45. Prove that there is no isometry of any small region of S(0, 1)
into R2. For instance, no matter how small ε > 0 is, there is no isometry of {(x, y, z) |
x2 + y2 + z2 = 1, 1− ε < z ≤ 1} onto a region in R2.

(HINT: you might want to think about small circles in S(0, 1).)

5. Lambert conformal conical projection

PROBLEM 6–46∗.
a. Find a map of the USA which displays the Lambert type of projection used.
b. Write an essay about this projection, complete with formulas and proofs.


