Handout 4. The Inverse and Implicit Function Theorems

Recall that a linear map $L: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ with $\operatorname{det} L \neq 0$ is one-to-one. By the next theorem, a continuously differentiable map between regions in \mathbf{R}^{n} is locally one-to-one near any point where its differential has nonzero determinant.

Inverse Function Theorem. Suppose U is open in \mathbf{R}^{n} and $F: U \rightarrow \mathbf{R}^{n}$ is a continuously differentiable mapping, $p \in U$, and the differential at $p, d F_{p}$, is an isomorphism. Then there exist neighborhoods V of p in U and W of $F(p)$ in \mathbf{R}^{n} so that $F: V \rightarrow W$ has a continuously differentiable inverse $F^{-1}: W \rightarrow V$ with

$$
d\left(F^{-1}\right)_{y}=\left[d F_{F^{-1}\{y\}}\right]^{-1} \text { for } y \in W .
$$

Moreover, F^{-1} is smooth (infinitely differentiable) whenever F is smooth.
Thus, the equation $y=F(x)$, written in component form as a system of n equations,

$$
y_{i}=F_{i}\left(x_{1}, \ldots, x_{n}\right) \text { for } i=1, \ldots, n,
$$

can be solved for x_{1}, \ldots, x_{n} in terms of y_{1}, \ldots, y_{n} provided we restrict the points x and y to small enough neighborhoods of p and $F(p)$. The solutions are then unique and continuously differentaible.

Proof : Let $L=d F_{p}$, and note that the number

$$
\lambda=\frac{1}{2} \inf _{|v|=1}|L(v)|=\frac{1}{2 \sup _{|w|=1}\left|L^{-1}(w)\right|}
$$

is positive. Since $d F_{x}$ is continuous in x at $x=p$, we have the inequality

$$
\sup _{|v|=1}\left|d F_{x}(v)-L(v)\right| \leq \lambda
$$

true for all x in some sufficiently small ball V about p in U. Thus, by linearity,

$$
\left|d F_{x}(v)-L(v)\right| \leq \lambda|v| \text { for all } v \in \mathbf{R}^{n} \text { and } x \in V .
$$

With each $y \in \mathbf{R}^{n}$, we associate the function

$$
A^{y}(x)=x+L^{-1}(y-F(x)) .
$$

Then

$$
F(x)=y \text { if and only if } x \text { is a fixed point of } A_{y} .
$$

Since $d A^{y}=\mathrm{Id}-L^{-1}\left(d F_{x}\right)=L^{-1}\left(L-d F_{x}\right)$, the above inequalities imply that

$$
\left|d A_{x}^{y}(v)\right| \leq \frac{1}{2}|v| \text { for } x \in V \text { and } v \in \mathbf{R}^{n}
$$

Thus, for $w, x \in V$,

$$
\begin{align*}
\left|A^{y}(w)-A^{y}(x)\right| & =\left|\int_{0}^{1} \frac{d}{d t} A^{y}(x+t(w-x)) d t\right| \\
& \leq \int_{0}^{1}\left|d A_{x+t(w-x)}^{y}(w-x)\right| d t \leq \frac{1}{2}|w-x| \tag{*}
\end{align*}
$$

It follows that A^{y} has at most one fixed point in V, and there is at most one solution $x \in V$ for $F(x)=y$.

Next we verify that $W=F(V)$ is open. To do this, we choose, for any point $\tilde{w}=F(\tilde{x}) \in W$ with $\tilde{x} \in V$, a sufficiently small positive r, so that the ball $B=\mathbf{B}_{r}(\tilde{x})$ has closure $\bar{B} \subset V$. We will show that $\mathbf{B}_{\lambda r}(\tilde{w}) \subset W$. This will give the openness of W.

For any $y \in \mathbf{B}_{\lambda r}(\tilde{w})$, and A^{y} as above,

$$
\left|A^{y}(\tilde{x})-\tilde{x}\right|=\left|L^{-1}(y-\tilde{w})\right|<\frac{1}{2 \lambda} \lambda r=\frac{r}{2} .
$$

For $x \in \bar{B}$ it follows that

$$
\left|A^{y}(x)-\tilde{x}\right| \leq\left|A^{y}(x)-A^{y}(\tilde{x})\right|+\left|A^{y}(\tilde{x})-\tilde{x}\right|<\frac{1}{2}|x-\tilde{x}|+\frac{r}{2} \leq r .
$$

So $A^{y}(x) \in B$. By $\left(^{*}\right) A^{y}$ thus gives a contraction of \bar{B}. So A_{y} has fixed point x in \bar{B}, and $y=F(x) \in F(\bar{B}) \subset F(V)=W$. Thus $\mathbf{B}_{\lambda r}(\tilde{w}) \subset W$.

Next we show that $F^{-1}: W \rightarrow V$ is differentiable at each point $y \in W$ and that

$$
d\left(F^{-1}\right)_{y}=M^{-1} \text { where } M=d F_{x} \text { with } x=F^{-1}(y) \in V .
$$

Suppose $y+k \in W$ and $x+h=F^{-1}(y+k) \in V$. Then, with our previous notations,

$$
\left|h-L^{-1}(k)\right|=\left|h-L^{-1}(F(x+h)-F(x))\right|=\left|A^{y}(x+h)-A^{y}(x)\right| \leq \frac{1}{2}|h|
$$

which implies that

$$
\frac{1}{2}|h| \leq\left|L^{-1}(k)\right| \leq\left(\frac{1}{2 \lambda}\right)|k|
$$

We now obtain the desired formula for $d\left(F^{-1}\right)_{y}$ by computing that

$$
\begin{aligned}
\frac{\left|F^{-1}(y+k)-F^{-1}(y)-M^{-1} k\right|}{|k|} & =\frac{\left|h-M^{-1} k\right|}{|k|} \\
& =\left|M^{-1}\left(\frac{F(x+h)-F(x)-M h}{|h|}\right)\right| \frac{|h|}{|k|} \\
& \leq \frac{1}{\lambda}\left|M^{-1}\left(\frac{F(x+h)-F(x)-M h}{|h|}\right)\right|
\end{aligned}
$$

which approaches 0 as $|k| \rightarrow 0$ because $M=d F_{x}$.
Finally, since the inversion of matrices is, by Cramer's rule, a continuous, in fact, smooth, function of the entries, we deduce from our formula that F^{-1} is continuously differentiable. Moreover, repeatly differentiating the formula shows that F^{-1} is a smooth mapping whenever F is.

Next we turn to the Implicit Function Theorem. This important theorem gives a condition under which one can locally solve an equation (or, via vector notation, system of equations)

$$
f(x, y)=0
$$

for y in terms of x. Geometrically the solution locus of points (x, y) satisfying the equation is thus represented as the graph of a function $y=g(x)$. For smooth f this is a smooth manifold.

Let $(x, y)=\left(\left(x_{1}, \ldots, x_{m}\right),\left(y_{1}, \ldots, y_{n}\right)\right)$ denote a point in $\mathbf{R}^{m} \times \mathbf{R}^{n}$, and, for an \mathbf{R}^{n}-valued function $f(x, y)=\left(f_{1}, \ldots, f_{n}\right)(x, y)$, let $d_{x} f$ denote the partial differential represented by the $n \times m$ matrix $\left[\frac{\partial f_{i}}{\partial x_{i}}\right]$ and $d_{y} f$ denote the partial differential represented by the $n \times n$ matrix $\left[\frac{\partial f_{i}}{\partial y_{j}}\right]$.

Implicit Function Theorem. Suppose $f(x, y)$ is a continuously differentiable \mathbf{R}^{n} valued function near a point $(a, b) \in \mathbf{R}^{m} \times \mathbf{R}^{n}, f(a, b)=0$, and $\left.\operatorname{det} d_{y} f\right|_{(a, b)} \neq 0$. Then

$$
\{(x, y) \in W: f(x, y)=0\}=\{(x, g(x)): x \in X\}
$$

for some open neighborhood W of (a, b) in $\mathbf{R}^{m} \times \mathbf{R}^{n}$ and some continuously differentiable function g mapping some \mathbf{R}^{m} neighborhood X of a into \mathbf{R}^{n}. Moreover,

$$
\left(d_{x} g\right)_{x}=-\left.\left.\left(d_{y} f\right)^{-1}\right|_{(x, g(x))} d_{x} f\right|_{(x, g(x))},
$$

and g is smooth in case f is smooth.

Proof : Define $F(x, y)=(x, f(x, y))$, and compute that

$$
\operatorname{det} d F_{(a, b)}=\operatorname{det}\left(d_{y} f\right)_{(a, b)} \neq 0
$$

The Inverse Function Theorem thus gives a continuously differentiable inverse $F^{-1}: W \rightarrow V$ for some open neighborhoods V of (a, b) and W of $(a, 0)$ in $\mathbf{R}^{m} \times \mathbf{R}^{n}$.

The set $X=\left\{x \in \mathbf{R}^{m}:(x, 0) \in W\right\}$ is open in \mathbf{R}^{m}, and, for each point $x \in X, F^{-1}(x, 0)=(x, g(x))$ for some point $g(x) \in \mathbf{R}^{n}$. Moreover,

$$
\begin{aligned}
\{(x, y) \in W: f(x, y)=0\} & =\left(F^{-1} \circ F\right)\left(W \cap f^{-1}\{0\}\right) \\
& =F^{-1}\left(W \cap\left(\mathbf{R}^{m} \times\{0\}\right)\right)=\{(x, g(x)): x \in X\}
\end{aligned}
$$

One readily checks that g is continuously differentiable with

$$
\frac{\partial g_{i}}{\partial x_{j}}(x)=\frac{\partial\left(F^{-1}\right)_{m+i}}{\partial x_{j}}(x, 0)
$$

for $i=1, \ldots, n, j=1, \ldots, m$, and $x \in W$. The formula for $\left(d_{x} g\right)_{x}$ follows from differentiating the identity

$$
f(x, g(x)) \equiv 0 \text { on } W
$$

and using the chain rule. Smoothness of g follows from smoothness of f by repeatedly differentiating this identity.

