Handout 4. The Inverse and Implicit Function Theorems

Recall that a linear map $L : \mathbf{R}^n \to \mathbf{R}^n$ with det $L \neq 0$ is one-to-one. By the next theorem, a continuously differentiable map between regions in \mathbf{R}^n is *locally one-to-one* near any point where its differential has nonzero determinant.

Inverse Function Theorem. Suppose U is open in \mathbb{R}^n and $F : U \to \mathbb{R}^n$ is a continuously differentiable mapping, $p \in U$, and the differential at p, dF_p , is an isomorphism. Then there exist neighborhoods V of p in U and W of F(p) in \mathbb{R}^n so that $F : V \to W$ has a continuously differentiable inverse $F^{-1} : W \to V$ with

$$d(F^{-1})_y = \left[dF_{F^{-1}\{y\}} \right]^{-1}$$
 for $y \in W$.

Moreover, F^{-1} is smooth (infinitely differentiable) whenever F is smooth.

Thus, the equation y = F(x), written in component form as a system of n equations,

$$y_i = F_i(x_1, ..., x_n)$$
 for $i = 1, ..., n$,

can be solved for x_1, \ldots, x_n in terms of y_1, \ldots, y_n provided we restrict the points x and y to small enough neighborhoods of p and F(p). The solutions are then unique and continuously differentiable.

Proof : Let $L = dF_p$, and note that the number

$$\lambda \ = \ \frac{1}{2} \inf_{|v|=1} |L(v)| \ = \ \frac{1}{2 \sup_{|w|=1} |L^{-1}(w)|}$$

is positive. Since dF_x is continuous in x at x = p, we have the inequality

$$\sup_{|v|=1} |dF_x(v) - L(v)| \leq \lambda$$

true for all x in some sufficiently small ball V about p in U. Thus, by linearity,

$$|dF_x(v) - L(v)| \leq \lambda |v|$$
 for all $v \in \mathbf{R}^n$ and $x \in V$.

With each $y \in \mathbf{R}^n$, we associate the function

$$A^{y}(x) = x + L^{-1}(y - F(x)).$$

Then

$$F(x) = y$$
 if and only if x is a fixed point of A_y .

Since $dA^y = \text{Id} - L^{-1}(dF_x) = L^{-1}(L - dF_x)$, the above inequalities imply that

$$|dA_x^y(v)| \leq \frac{1}{2}|v|$$
 for $x \in V$ and $v \in \mathbf{R}^n$.

Thus, for $w, x \in V$,

$$|A^{y}(w) - A^{y}(x)| = |\int_{0}^{1} \frac{d}{dt} A^{y} (x + t(w - x)) dt |$$

$$\leq \int_{0}^{1} |dA^{y}_{x + t(w - x)}(w - x)| dt \leq \frac{1}{2} |w - x|. \qquad (*)$$

It follows that A^y has at most one fixed point in V, and there is at most one solution $x \in V$ for F(x) = y.

Next we verify that W = F(V) is open. To do this, we choose, for any point $\tilde{w} = F(\tilde{x}) \in W$ with $\tilde{x} \in V$, a sufficiently small positive r, so that the ball $B = \mathbf{B}_r(\tilde{x})$ has closure $\overline{B} \subset V$. We will show that $\mathbf{B}_{\lambda r}(\tilde{w}) \subset W$. This will give the openness of W.

For any $y \in \mathbf{B}_{\lambda r}(\tilde{w})$, and A^y as above,

$$|A^{y}(\tilde{x}) - \tilde{x}| = |L^{-1}(y - \tilde{w})| < \frac{1}{2\lambda}\lambda r = \frac{r}{2}$$

For $x \in \overline{B}$ it follows that

$$|A^{y}(x) - \tilde{x}| \leq |A^{y}(x) - A^{y}(\tilde{x})| + |A^{y}(\tilde{x}) - \tilde{x}| < \frac{1}{2}|x - \tilde{x}| + \frac{r}{2} \leq r$$

So $A^y(x) \in B$. By (*) A^y thus gives a contraction of \overline{B} . So A_y has fixed point x in \overline{B} , and $y = F(x) \in F(\overline{B}) \subset F(V) = W$. Thus $\mathbf{B}_{\lambda r}(\tilde{w}) \subset W$.

Next we show that $F^{-1}: W \to V$ is differentiable at each point $y \in W$ and that

$$d(F^{-1})_y = M^{-1}$$
 where $M = dF_x$ with $x = F^{-1}(y) \in V$

Suppose $y+k \in W$ and $x+h = F^{-1}(y+k) \in V$. Then, with our previous notations,

$$|h - L^{-1}(k)| = |h - L^{-1}(F(x+h) - F(x))| = |A^{y}(x+h) - A^{y}(x)| \le \frac{1}{2}|h|,$$

which implies that

$$\frac{1}{2}|h| \leq |L^{-1}(k)| \leq (\frac{1}{2\lambda})|k|$$
.

We now obtain the desired formula for $d(F^{-1})_y$ by computing that

$$\begin{aligned} \frac{|F^{-1}(y+k) - F^{-1}(y) - M^{-1}k|}{|k|} &= \frac{|h - M^{-1}k|}{|k|} \\ &= |M^{-1} \left(\frac{F(x+h) - F(x) - Mh}{|h|}\right) |\frac{|h|}{|k|} \\ &\leq \frac{1}{\lambda} |M^{-1} \left(\frac{F(x+h) - F(x) - Mh}{|h|}\right)|, \end{aligned}$$

which approaches 0 as $|k| \to 0$ because $M = dF_x$.

Finally, since the inversion of matrices is, by Cramer's rule, a continuous, in fact, smooth, function of the entries, we deduce from our formula that F^{-1} is continuously differentiable. Moreover, repeatly differentiating the formula shows that F^{-1} is a smooth mapping whenever F is.

Next we turn to the *Implicit Function Theorem*. This important theorem gives a condition under which one can locally solve an equation (or, via vector notation, system of equations)

$$f(x,y) = 0$$

for y in terms of x. Geometrically the solution locus of points (x, y) satisfying the equation is thus represented as the graph of a function y = g(x). For smooth f this is a smooth manifold.

Let $(x, y) = ((x_1, \ldots, x_m), (y_1, \ldots, y_n))$ denote a point in $\mathbf{R}^m \times \mathbf{R}^n$, and, for an \mathbf{R}^n -valued function $f(x, y) = (f_1, \ldots, f_n)(x, y)$, let $d_x f$ denote the partial differential represented by the $n \times m$ matrix $\begin{bmatrix} \frac{\partial f_i}{\partial x_j} \end{bmatrix}$ and $d_y f$ denote the partial differential represented by the $n \times n$ matrix $\begin{bmatrix} \frac{\partial f_i}{\partial y_i} \end{bmatrix}$.

Implicit Function Theorem. Suppose f(x, y) is a continuously differentiable \mathbb{R}^n -valued function near a point $(a, b) \in \mathbb{R}^m \times \mathbb{R}^n$, f(a, b) = 0, and $\det d_y f|_{(a,b)} \neq 0$. Then

$$\{(x,y)\in W : f(x,y)=0\} = \{(x,g(x)) : x\in X\}$$

for some open neighborhood W of (a, b) in $\mathbb{R}^m \times \mathbb{R}^n$ and some continuously differentiable function g mapping some \mathbb{R}^m neighborhood X of a into \mathbb{R}^n . Moreover,

$$(d_xg)_x = -(d_yf)^{-1}|_{(x,g(x))}d_xf|_{(x,g(x))},$$

and g is smooth in case f is smooth.

Proof : Define F(x, y) = (x, f(x, y)), and compute that

$$\det dF_{(a,b)} = \det (d_y f)_{(a,b)} \neq 0 .$$

The Inverse Function Theorem thus gives a continuously differentiable inverse $F^{-1}: W \to V$ for some open neighborhoods V of (a, b) and W of (a, 0) in $\mathbb{R}^m \times \mathbb{R}^n$.

The set $X = \{x \in \mathbf{R}^m : (x,0) \in W\}$ is open in \mathbf{R}^m , and, for each point $x \in X, F^{-1}(x,0) = (x,g(x))$ for some point $g(x) \in \mathbf{R}^n$. Moreover,

$$\{ (x,y) \in W : f(x,y) = 0 \} = (F^{-1} \circ F) (W \cap f^{-1} \{ 0 \})$$

= $F^{-1} (W \cap (\mathbf{R}^m \times \{ 0 \})) = \{ (x,g(x)) : x \in X \} .$

One readily checks that g is continuously differentiable with

$$\frac{\partial g_i}{\partial x_j}(x) = \frac{\partial (F^{-1})_{m+i}}{\partial x_j}(x,0)$$

for i = 1, ..., n, j = 1, ..., m, and $x \in W$. The formula for $(d_x g)_x$ follows from differentiating the identity

$$f(x,g(x)) \equiv 0 \text{ on } W$$
,

and using the chain rule. Smoothness of g follows from smoothness of f by repeatedly differentiating this identity.