
Handout 4. The Inverse and Implicit Function Theorems

Recall that a linear map L : Rn → Rn with det L 6= 0 is one-to-one. By the
next theorem, a continuously differentiable map between regions in Rn is locally
one-to-one near any point where its differential has nonzero determinant.

Inverse Function Theorem. Suppose U is open in Rn and F : U → Rn is a
continuously differentiable mapping, p ∈ U , and the differential at p, dFp, is an
isomorphism. Then there exist neighborhoods V of p in U and W of F (p) in Rn so
that F : V → W has a continuously differentiable inverse F−1 : W → V with

d(F−1)y =
[
dFF−1{y}

]−1 for y ∈ W .

Moreover, F−1 is smooth (infinitely differentiable) whenever F is smooth.

Thus, the equation y = F (x), written in component form as a system of n

equations,
yi = Fi(x1, . . . , xn) for i = 1, . . . , n ,

can be solved for x1, . . . , xn in terms of y1, . . . , yn provided we restrict the points x

and y to small enough neighborhoods of p and F (p). The solutions are then unique
and continuously differentaible.

Proof : Let L = dFp, and note that the number

λ =
1
2

inf
|v|=1

|L(v)| =
1

2 sup|w|=1 |L−1(w)|

is positive. Since dFx is continuous in x at x = p, we have the inequality

sup
|v|=1

|dFx(v)− L(v)| ≤ λ

true for all x in some sufficiently small ball V about p in U . Thus, by linearity,

|dFx(v)− L(v)| ≤ λ |v| for all v ∈ Rn and x ∈ V .

With each y ∈ Rn, we associate the function

Ay(x) = x + L−1
(
y − F (x)

)
.

Then
F (x) = y if and only if x is a fixed point of Ay .
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Since dAy = Id − L−1
(
dFx

)
= L−1

(
L− dFx

)
, the above inequalities imply that

|dAy
x(v)| ≤ 1

2
|v| for x ∈ V and v ∈ Rn .

Thus, for w, x ∈ V ,

|Ay(w)−Ay(x)| = |
∫ 1

0

d

dt
Ay

(
x + t(w − x)

)
dt |

≤
∫ 1

0

|dAy
x+t(w−x)(w − x)| dt ≤ 1

2
|w − x| . (∗)

It follows that Ay has at most one fixed point in V , and there is at most one solution
x ∈ V for F (x) = y.

Next we verify that W = F (V ) is open. To do this, we choose, for any point
w̃ = F (x̃) ∈ W with x̃ ∈ V , a sufficiently small positive r, so that the ball B = Br(x̃)
has closure B ⊂ V . We will show that Bλr(w̃) ⊂ W . This will give the openness of
W .

For any y ∈ Bλr(w̃), and Ay as above,

|Ay(x̃)− x̃| = |L−1(y − w̃)| <
1
2λ

λr =
r

2
.

For x ∈ B it follows that

|Ay(x)− x̃| ≤ |Ay(x)−Ay(x̃)|+ |Ay(x̃)− x̃| <
1
2
|x− x̃|+ r

2
≤ r .

So Ay(x) ∈ B. By (*) Ay thus gives a contraction of B. So Ay has fixed point x in
B, and y = F (x) ∈ F (B) ⊂ F (V ) = W . Thus Bλr(w̃) ⊂ W .

Next we show that F−1 : W → V is differentiable at each point y ∈ W and
that

d(F−1)y = M−1 where M = dFx with x = F−1(y) ∈ V .

Suppose y+k ∈ W and x+h = F−1(y+k) ∈ V . Then, with our previous notations,

|h− L−1(k)| = |h− L−1
(
F (x + h)− F (x)

)
| = |Ay(x + h)−Ay(x)| ≤ 1

2
|h| ,

which implies that
1
2
|h| ≤ |L−1(k)| ≤

( 1
2λ

)
|k| .
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We now obtain the desired formula for d(F−1)y by computing that

|F−1(y + k)− F−1(y)−M−1k|
|k|

=
|h−M−1k|

|k|

= |M−1
(F (x + h)− F (x)−Mh

|h|
)
| |h|
|k|

≤ 1
λ
|M−1

(F (x + h)− F (x)−Mh

|h|
)
| ,

which approaches 0 as |k| → 0 because M = dFx.
Finally, since the inversion of matrices is, by Cramer’s rule, a continuous, in

fact, smooth, function of the entries, we deduce from our formula that F−1 is
continuously differentiable. Moreover, repeatly differentiating the formula shows
that F−1 is a smooth mapping whenever F is.

Next we turn to the Implicit Function Theorem. This important theorem gives
a condition under which one can locally solve an equation (or, via vector notation,
system of equations)

f(x, y) = 0

for y in terms of x. Geometrically the solution locus of points (x, y) satisfying the
equation is thus represented as the graph of a function y = g(x). For smooth f this
is a smooth manifold.

Let (x, y) =
(
(x1, . . . , xm), (y1, . . . , yn)

)
denote a point in Rm ×Rn, and, for

an Rn-valued function f(x, y) = (f1, . . . , fn)(x, y) , let dxf denote the partial
differential represented by the n × m matrix

[
∂fi

∂xj

]
and dyf denote the partial

differential represented by the n× n matrix
[

∂fi

∂yj

]
.

Implicit Function Theorem. Suppose f(x, y) is a continuously differentiable Rn-
valued function near a point (a, b) ∈ Rm ×Rn, f(a, b) = 0, and det dyf |(a,b) 6= 0 .
Then

{(x, y) ∈ W : f(x, y) = 0} = {
(
x, g(x)

)
: x ∈ X}

for some open neighborhood W of (a, b) in Rm × Rn and some continuously
differentiable function g mapping some Rm neighborhood X of a into Rn. Moreover,

(dxg)x = −(dyf)−1|(x,g(x))dxf |(x,g(x)) ,

and g is smooth in case f is smooth.
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Proof : Define F (x, y) = (x, f(x, y)
)
, and compute that

det dF(a,b) = det(dyf)(a,b) 6= 0 .

The Inverse Function Theorem thus gives a continuously differentiable inverse
F−1 : W → V for some open neighborhoods V of (a, b) and W of (a, 0) in Rm×Rn.

The set X = {x ∈ Rm : (x, 0) ∈ W} is open in Rm, and, for each point
x ∈ X, F−1(x, 0) =

(
x, g(x)

)
for some point g(x) ∈ Rn. Moreover,

{(x, y) ∈ W : f(x, y) = 0} = (F−1 ◦ F )
(
W ∩ f−1{0}

)
= F−1

(
W ∩ (Rm × {0})

)
= {

(
x, g(x)

)
: x ∈ X} .

One readily checks that g is continuously differentiable with

∂gi

∂xj
(x) =

∂(F−1)m+i

∂xj
(x, 0)

for i = 1, . . . , n, j = 1, . . . ,m, and x ∈ W . The formula for (dxg)x follows from
differentiating the identity

f
(
x, g(x)

)
≡ 0 on W ,

and using the chain rule. Smoothness of g follows from smoothness of f by
repeatedly differentiating this identity.
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