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2.1 Overview 

 

In this lecture we will take another look at linear equations. More 

importantly, we are going to start using computers to do the hard work for us. 
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In this lecture, we are going to write a program, which can solve a set of 

linear equations, using the method of Gaussian elimination.  The program you 

will meet in this lecture will contain the following elements. 

 

We want to write a program (a program or subprogram is referred to as a 

function in Matlab), which will take a matrix A, and a right-hand side vector 

b 

as inputs, and give back a vector which contains the solution to Ax=b. 

function [x] = GaussianEliminate(A, b) 

 

%work out the number of equations 

N = length(b)     

 

 

 

return 

 

We need to write our program in a text file and make sure 

extension “GaussianEliminate.m”. To call the program in 

would write in the command line: 

 

GaussianEliminate(Matrix, RightHandSide

 

Note : in these lecture notes, computer code will in a differ

enclosed in a box. 
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2.2 Gaussian elimination 

 

You will have probably seen Gaussian elimination before, so hopefully this 

will just be a review. Here we will attempt to write an algorithm which can be 

performed by a computer. Also, for the time being we will assume that we 

have a square system of equations with a unique solution to our equations. A 

robust algorithm would check to make sure there was a solution before 

proceeding. 

 

Lets consider the system of equations 

 

Ax = b        (2-1) 
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We could write this in augmented form as  
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Whilst we go through the method of solving these equations in the handout, 

we will go through (in parallel, on the board) the following example: 
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Now we can do our row operations (equivalent to adding multiples of 

equations together to eliminate variables, or if you prefer, to multiplying both 

sides of Eq. 2-1 by an elementary matrix which performs the same row 

operation). 

 

Now we begin trying to reduce our system of equations to a simpler form. 

Using row 1, we can eliminate element A21 by subtracting A21/A11 = d21 times 

row 1 from row 2. Row 1 is the pivot row and A11 is the pivot element 
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The following operations  

A21 -> A21 – A11d21

 

 

 

A22 -> A22 – A12d21 

A23 -> A23 – A13d21

b2->b2 – b1d 

 

give 
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Similarly, we can perform a similar opera

A31/A11 = d31 times row 1 from row 2.   
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d   = A(2,1)/A(1,1)  

A(2,1) = A(2,1) – A(1,1)*d

A(2,2) = A(2,2) – A(1,2)*d

A(2,3) = A(2,3) – A(1,3)*d

b(2) = b(2) – b(1)*d
   (2-4) 

tion to eliminate A31 by subtracting 
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A31 -> A31 – A11d31

A32 -> A32 – A12d31 

A33 -> A33 – A13d31

b3->b3 – b1d 
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d   = A(3,1)/A(1,1)  

A(3,1) = A(3,1) – A(1,1)*d 

A(3,2) = A(3,2) – A(1,2)*d 

A(3,3) = A(3,3) – A(1,3)*d 

b(3) = b(3) – b(1)*d 

Having made all the elements below the pivot in this column zero, we move 

onto the next column. The pivot is now the element A22' 

Now we can eliminate A32’ using row 2 

d32 = A32’/A22’ d   = A(3,2)/A(2,2)  

A(3,2) = A(3,2) – A(2,2)*d 

A(3,3) = A(3,3) – A(2,3)*d 

b(3)  = b(3) – b(2)*d      

A32’ -> A32’ – A22’d32 

A33’ -> A33’ – A23’d32

b3->b3 – b2d 

 

giving 
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Now that the system of equations is in a triangular form, the solution can 

readily obtained by back-substitution. Notice, that to get to this stage, we 

worked on each column in turn, eliminating all the elements below the 

diagonal (pivot) element. 
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Now we have an upper triangular system, we can use back substitution 

 

x3 = b3’’/A33’’ 

x2 = (b2’-A23’x3)/A22’ 

x1 = (b1-A12x2- A13x3)/A11 

 

2.2.1 Writing the program  - G

 

Rather than type out each com

loop through these operations. 

to work with whole rows and 

entire row or column of a matr

 A(1,:)   = [A11,A12,A1

 A(:,2)   = [A12,A22,A3

or parts of a matrix 

 A(1,2:end)= [A12,A1

So a row operation, e.g. subtra

 A(i,:)   = A(i,:) –

 

We need two loops, one to loop

element on each column and el

loop to go through each row un

for column=1:(N-1) 

 %work on all the row

   for row = (column+

   % the row operatio

   end%loop through r

end %loop through col

    

 

x(3)   =  b(3)/A(3,3); 

x(2)   = (b(2)-A(2,3)*x(3))/A(2,2);

x(1)   = (b(1)-A(1,2)*x(2)-

A(1,3)*x(3))/A(1,1);  
aussian elimination  

mand into Matlab, we can use "for loops", to 

We can also take advantage of Matlab’s ability 

columns of a matrix. If you want to access an 

ix, you can use do the following: 

3] 

2]T

3] 

cting 2*row 1 from row i is: 

2* A(1,:) 

 through the columns (we find the diagonal 

iminate each element below it) and an inner 

der the pivot element. 

s below the diagonal element 

1):N 

n goes here 

ows  

umns 
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If we add the code to do a row operation within these loops our program 

looks like: 

 

function [x] = GaussianEliminate(A, b) 

%work out the number of equations 

N = length(b) 

%Gaussian elimination 

for column=1:(N-1) 

 %work on all the rows below the diagonal element 

 for row = (column+1):N 

 

   %work out the value of d 

   d = A(row,column)/A(column,column); 

   %do the row operation  

      A(row,:) = A(row,:)-d*A(column,:) 

      b(row)   = b(row)-d*b(column) 

   end%loop through rows  

end %loop through columns 

 

return 

 

 

 

We still haven't finished, but we are half way there.  
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2.2.2 Writing the program  - Back substitution  

 

For the back substitution, we start at the bottom row and work upwards. For 

each row we need to do: 

  ii,
N     to1i

ji, AA ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

+=j
jii xbx  

We can write a for loop to accomplish the back-substitution 

 

%back substitution 

for row=N:-1:1 

x(row) = b(row); 

for i=(row+1):N 

 x(row) = x(row)-A(row,i)*x(i); 

end 

x(row) = x(row)/A(row,row); 

end  

 

 

Adding the back substitution the main program gives: 

 

 

 

 

 

 

 

 

 

 

 - 8 - 



Numerical Methods in Chemical Engineering 

function [x] = GaussianEliminate(A, b) 

%work out the number of equations 

N = length(b) 

%Gaussian elimination 

for column=1:(N-1) 

 %work on all the rows below the diagonal element 

 for row = (column+1):N 

   %work out the value of d 

   d = A(row,column)/A(column,column); 

      %do the row operation 

      A(row,:) = A(row,:)-d*A(column,:) 

      b(row)   = b(row)-d*b(column) 

 end%loop through rows  

end %loop through columns 

 

%back substitution 

for row=N:-1:1 

x(row) = b(row); 

for i=(row+1):N 

 x(row) = x(row)-A(row,i)*x(i); 

end 

x(row) = x(row)/A(row,row); 

end  

%return the answer  

x = x’; 

return 
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2.3 Partial pivoting 

This basically means row swapping. Before performing elimination on a 

column, it is advantageous to swap rows and promote the row with the largest 

value in that column to the diagonal. 

 

e.g. if our matrix A is  

⎥
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⎣

⎡

111
123
120

 

 

Our algorithm would fail (divide by zero). But we can swap row 1, with row 

2, which has the largest absolute value in this column. (note that we must also 

swap the rows in the RHS vector b) 
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120
123

 

 

Now our algorithm can proceed as normal.  

 

If we always swap rows to move the largest element to diagonal, the values of 

dij will always be less than one. This reduces the amount of accumulated 

numerical error in the calculation. 

 

(Note: we would also have to swap the rows in the right hand side vector too, 

since all we are doing is re-ordering the equations) 
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2.4 Why we shouldn’t use this algorithm? 

 

There any several reasons why we should not use this algorithm. 

 

1. Matlab will compute the solution to Ax = b using its own (more 

efficient solvers) with the command A\b 

2. Our algorithm contains lots of for loops. A peculiarity of Matlab makes 

for loops very slow, but vector or matrix operations very fast. The 

vector or matrix operations are compiled. However, each step in our 

algorithm (including each loop of the for loop) must first be interpreted 

before execution. 

3. There are fundamental problems with Gaussian elimination. 
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2.5 Problems with Gaussian elimination 

 

We can modify the algorithm to work out how many subtraction + 

multiplication operations it performs for a given size of matrix A.  

 

 

 

 

NumOperations = 0;

 

%Gaussian elimination 

for column=1:(N-1) 

 

    

 %work on all the rows below the diagonal element 

 for row = (column+1):N 

 

   %work out the value of d 

   d = A(row,column)/A(column,column); 

 

   %do the row operation 

   A(row,column:end) = A(row,column:end)- 

                         ... d*A(column,column:end); 

   b(row)            = b(row)-d*b(column); 

 

   NumOperations = NumOperations+N-column+1; 

 

 end%loop through rows  

end %loop through columns 
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y = 0.33*x3  - 0.33*x

 
y = 0.5*x2 - 0.5*x

 
 

We find that the number of operations required to perform Gaussian 

elimination is O(N3), where N is the number of equations. For large systems 

of equations Gaussian elimination is very inefficient – even for the fastest 

super computer! 

 

 

On the other hand, the number of operations required for back-substitution 

scales with O(N2).  Back substitution is much more efficient for large systems 

than Gaussian elimination. 
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2.6 LU decomposition 

 

Suppose we want to solve the same set of equations but with several different 

right hand sides. We don’t want to use the expense of Gaussian elimination 

every time we solve the equations, ideally we would like to only do the 

Gaussian elimination once. 

 

e.g.    Ax1 = b1 , Ax2 = b2 , Ax3 = b3 

 

which may be written as 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

MMM

MMM

MMM

MMM

321321 bbbxxxA  

 

If by Gaussian elimination, we could factor our matrix A into two matrices, L 

and U, such that  
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we could then solve for each right hand side using only forward, followed by 

backward substitution. 
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 Ax   = b

LUx = b 

let y =Ux 

 Ly    = b   (Forward substitution) 

Then solve  

 Ux   = y   (Backward substitution) 

 

Lets start with the matrix A from our previous example 

 

When we eliminate the element A21 (subtract d21 = A21/A11 times row 1 from 

row 2), we can keep multiplying by a matrix that undoes this row operation, 

so that the product remains equal to A. 
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When we eliminate the element A31 (subtract d31 = A31/A11 times row 1 from 

row 3), we can multiply by a matrix that undoes this row operation, so that 

the product remains equal to A. 
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When we eliminate the element A32 (subtract d32 = A32/A22 times row 2 from 

row 3), we can keep multiply by a matrix that undoes this row operation, so 

that the product remains equal to A. 
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I.e. we have performed LU decomposition. 

 

In practice we don't bother recording the matrices, we can just write down the 

matrix L. 
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2.6.1 What happens if we have to do a row swap during the Gaussian 

elimination? 

 

Suppose we had reached the following stage in the elimination process 
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and we needed to exchange rows 2 and 3. 
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This is a 
permutation 
matrix 

Multiplying by a permutation matrix will swap the rows of a matrix. The 

permutation matrix is just an identity matrix, whose rows have been 

interchanged.  

 

We can then continue as normal. 
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2.6.2 A recipe for doing LU decomposition 

1. Write down a permutation matrix, P (which is initially the identity matrix) 

  P =  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
010
001

 

2. Write down the Matrix you want to decompose 

   
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

021
112
110

3. Starting with column 1, row swap to promote the largest value in the 

column to the diagonal. Do exactly the same row swap to the Matrix P. 

      P =  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

021
110
112

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
001
010

4. Eliminate all the elements below the diagonal in column 1. Record the 

multiplier d used for elimination where you create the zero.  

    Here we did row 3 = row 3 - 0.5*row 1 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

− 5.05.10
110
112

   
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

− 5.05.15.0
110
112
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5. Move onto the next column. Swap rows to move the largest element to the 

diagonal. (Do the same row swap to P) 

 

      P =  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

110
5.05.15.0
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

001
100
010

6. Eliminate the elements below the diagonal   

   row 3 = row 3 - 2/3*row 2  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

3/43/20
5.05.15.0

112

7. Repeat 5 and 6 for all columns 

8. Write down L, U and P 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

3/43/20
5.05.15.0
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implies  

U =  L =  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

3/400
5.05.10

112

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

13/20
015.0
001

 

and P =  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

001
100
010
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2.7 Summary 

• Gaussian elimination can be slow (the number of operations required to 

do Gaussian elimination is O(N3) where N is the number of equations. 

• Back substitution only takes O(N2) 

• If we want to solve the set of equations repeatedly with different right 

hand sides, LU decomposition means that we don't have to do Gaussian 

elimination every time. This is a considerable saving. 

• Matlab has inbuilt Matlab routines for solving linear equations (\) and 

LU decomposition (LU). They will generally be better than any you 

write yourself 
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2.8 Appendix: Code to do Gaussian elimination with partial 

pivoting  

function [x] = GaussianEliminate(A,b) 
% Solves Ax = b by Gaussian elimination 
 
 
%work out the number of equations 
N = length(b);    
%Gaussian elimination 
for column=1:(N-1) 
 
    %swap rows so that the row we are using to eliminate 
    %the entries in the rows below is larger than the 
    %values to be eliminated. 
    [dummy,index] = max(abs(A(column:end,column))); 
    index=index+column-1; 
    temp  = A(column,:);  
    A(column,:) = A(index,:); 
    A(index,:)  = temp; 
    temp = b(column) 
    b(column)= b(index); 
    b(index) = temp; 
  
 
    %work on all the rows below the diagonal element 
    for row =(column+1):N 
 
 
        %work out the value of d 
        d = A(row,column)/A(column,column); 
 
        %do the row operation (result displayed on screen) 
        A(row,column:end) = A(row,column:end)-d*A(column,column:end) ; 
     b(row)          = b(row)-d*b(column); 
    end%loop through rows  
end %loop through columns 
 
 
%back substitution 
 
for row=N:-1:1 
 
x(row) = b(row); 
 
    for i=(row+1):N 
     x(row) = x(row)-A(row,i)*x(i); 
    end 
 
x(row) = x(row)/A(row,row); 
  
end  
 
 
x = x' 
 
return 
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