
Numerical Methods in Chemical Engineering

2 Elimination methods for solving linear equations

2 Elimination methods for solving linear equations.................................... 1

2.1 Overview ... 1

2.2 Gaussian elimination... 3

2.2.1 Writing the program - Gaussian elimination 6

2.2.2 Writing the program - Back substitution 8

2.3 Partial pivoting .. 10

2.4 Why we shouldn’t use this algorithm?.. 11

2.5 Problems with Gaussian elimination .. 12

2.6 LU decomposition... 14

2.6.1 What happens if we have to do a row swap during the Gaussian

elimination?... 17

2.6.2 A recipe for doing LU decomposition 18

2.7 Summary ... 20

2.8 Appendix: Code to do Gaussian elimination with partial pivoting .. 21

2.1 Overview

In this lecture we will take another look at linear equations. More

importantly, we are going to start using computers to do the hard work for us.

 - 1 -

Numerical Methods in Chemical Engineering

In this lecture, we are going to write a program, which can solve a set of

linear equations, using the method of Gaussian elimination. The program you

will meet in this lecture will contain the following elements.

We want to write a program (a program or subprogram is referred to as a

function in Matlab), which will take a matrix A, and a right-hand side vector

b

as inputs, and give back a vector which contains the solution to Ax=b.

function [x] = GaussianEliminate(A, b)

%work out the number of equations

N = length(b)

return

We need to write our program in a text file and make sure

extension “GaussianEliminate.m”. To call the program in

would write in the command line:

GaussianEliminate(Matrix, RightHandSide

Note : in these lecture notes, computer code will in a differ

enclosed in a box.

 - 2 -
comment
that it has the

Matlab, we use

)

ent font, and

Numerical Methods in Chemical Engineering

2.2 Gaussian elimination

You will have probably seen Gaussian elimination before, so hopefully this

will just be a review. Here we will attempt to write an algorithm which can be

performed by a computer. Also, for the time being we will assume that we

have a square system of equations with a unique solution to our equations. A

robust algorithm would check to make sure there was a solution before

proceeding.

Lets consider the system of equations

Ax = b (2-1)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

3

2

1

333231

232221

131211

b
b
b

x
x
x

AAA
AAA
AAA

 (2-2)

We could write this in augmented form as

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

333231

232221

131211

b
b
b

AAA
AAA
AAA

 (2-3)

Whilst we go through the method of solving these equations in the handout,

we will go through (in parallel, on the board) the following example:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
1
1

021
112
111

3

2

1

x
x
x

 - 3 -

Numerical Methods in Chemical Engineering

Now we can do our row operations (equivalent to adding multiples of

equations together to eliminate variables, or if you prefer, to multiplying both

sides of Eq. 2-1 by an elementary matrix which performs the same row

operation).

Now we begin trying to reduce our system of equations to a simpler form.

Using row 1, we can eliminate element A21 by subtracting A21/A11 = d21 times

row 1 from row 2. Row 1 is the pivot row and A11 is the pivot element

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

333231

232221

131211

b
b
b

AAA
AAA
AAA

 (2-3)

The following operations

A21 -> A21 – A11d21

A22 -> A22 – A12d21

A23 -> A23 – A13d21

b2->b2 – b1d

give

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

333231

2322

131211

'''0
b
b
b

AAA
AA
AAA

Similarly, we can perform a similar opera

A31/A11 = d31 times row 1 from row 2.

 - 4 -
d = A(2,1)/A(1,1)

A(2,1) = A(2,1) – A(1,1)*d

A(2,2) = A(2,2) – A(1,2)*d

A(2,3) = A(2,3) – A(1,3)*d

b(2) = b(2) – b(1)*d
 (2-4)

tion to eliminate A31 by subtracting

Numerical Methods in Chemical Engineering

A31 -> A31 – A11d31

A32 -> A32 – A12d31

A33 -> A33 – A13d31

b3->b3 – b1d

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

'
'

''0
''0

3

2

1

3332

2322

131211

b
b
b

AA
AA
AAA

 (2-5)

d = A(3,1)/A(1,1)

A(3,1) = A(3,1) – A(1,1)*d

A(3,2) = A(3,2) – A(1,2)*d

A(3,3) = A(3,3) – A(1,3)*d

b(3) = b(3) – b(1)*d

Having made all the elements below the pivot in this column zero, we move

onto the next column. The pivot is now the element A22'

Now we can eliminate A32’ using row 2

d32 = A32’/A22’ d = A(3,2)/A(2,2)

A(3,2) = A(3,2) – A(2,2)*d

A(3,3) = A(3,3) – A(2,3)*d

b(3) = b(3) – b(2)*d

A32’ -> A32’ – A22’d32

A33’ -> A33’ – A23’d32

b3->b3 – b2d

giving

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

''
'

''00
''0

3

2

1

33

2322

131211

b
b
b

A
AA
AAA

 (2-6)

Now that the system of equations is in a triangular form, the solution can

readily obtained by back-substitution. Notice, that to get to this stage, we

worked on each column in turn, eliminating all the elements below the

diagonal (pivot) element.

 - 5 -

Numerical Methods in Chemical Engineering

Now we have an upper triangular system, we can use back substitution

x3 = b3’’/A33’’

x2 = (b2’-A23’x3)/A22’

x1 = (b1-A12x2- A13x3)/A11

2.2.1 Writing the program - G

Rather than type out each com

loop through these operations.

to work with whole rows and

entire row or column of a matr

 A(1,:) = [A11,A12,A1

 A(:,2) = [A12,A22,A3

or parts of a matrix

 A(1,2:end)= [A12,A1

So a row operation, e.g. subtra

 A(i,:) = A(i,:) –

We need two loops, one to loop

element on each column and el

loop to go through each row un

for column=1:(N-1)

 %work on all the row

 for row = (column+

 % the row operatio

 end%loop through r

end %loop through col

x(3) = b(3)/A(3,3);

x(2) = (b(2)-A(2,3)*x(3))/A(2,2);

x(1) = (b(1)-A(1,2)*x(2)-

A(1,3)*x(3))/A(1,1);
aussian elimination

mand into Matlab, we can use "for loops", to

We can also take advantage of Matlab’s ability

columns of a matrix. If you want to access an

ix, you can use do the following:

3]

2]T

3]

cting 2*row 1 from row i is:

2* A(1,:)

 through the columns (we find the diagonal

iminate each element below it) and an inner

der the pivot element.

s below the diagonal element

1):N

n goes here

ows

umns

- 6 -

Numerical Methods in Chemical Engineering

If we add the code to do a row operation within these loops our program

looks like:

function [x] = GaussianEliminate(A, b)

%work out the number of equations

N = length(b)

%Gaussian elimination

for column=1:(N-1)

 %work on all the rows below the diagonal element

 for row = (column+1):N

 %work out the value of d

 d = A(row,column)/A(column,column);

 %do the row operation

 A(row,:) = A(row,:)-d*A(column,:)

 b(row) = b(row)-d*b(column)

 end%loop through rows

end %loop through columns

return

We still haven't finished, but we are half way there.

 - 7 -

Numerical Methods in Chemical Engineering

2.2.2 Writing the program - Back substitution

For the back substitution, we start at the bottom row and work upwards. For

each row we need to do:

 ii,
N to1i

ji, AA ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

+=j
jii xbx

We can write a for loop to accomplish the back-substitution

%back substitution

for row=N:-1:1

x(row) = b(row);

for i=(row+1):N

 x(row) = x(row)-A(row,i)*x(i);

end

x(row) = x(row)/A(row,row);

end

Adding the back substitution the main program gives:

 - 8 -

Numerical Methods in Chemical Engineering

function [x] = GaussianEliminate(A, b)

%work out the number of equations

N = length(b)

%Gaussian elimination

for column=1:(N-1)

 %work on all the rows below the diagonal element

 for row = (column+1):N

 %work out the value of d

 d = A(row,column)/A(column,column);

 %do the row operation

 A(row,:) = A(row,:)-d*A(column,:)

 b(row) = b(row)-d*b(column)

 end%loop through rows

end %loop through columns

%back substitution

for row=N:-1:1

x(row) = b(row);

for i=(row+1):N

 x(row) = x(row)-A(row,i)*x(i);

end

x(row) = x(row)/A(row,row);

end

%return the answer

x = x’;

return

 - 9 -

Numerical Methods in Chemical Engineering

2.3 Partial pivoting

This basically means row swapping. Before performing elimination on a

column, it is advantageous to swap rows and promote the row with the largest

value in that column to the diagonal.

e.g. if our matrix A is

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

111
123
120

Our algorithm would fail (divide by zero). But we can swap row 1, with row

2, which has the largest absolute value in this column. (note that we must also

swap the rows in the RHS vector b)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

111
120
123

Now our algorithm can proceed as normal.

If we always swap rows to move the largest element to diagonal, the values of

dij will always be less than one. This reduces the amount of accumulated

numerical error in the calculation.

(Note: we would also have to swap the rows in the right hand side vector too,

since all we are doing is re-ordering the equations)

 - 10 -

Numerical Methods in Chemical Engineering

2.4 Why we shouldn’t use this algorithm?

There any several reasons why we should not use this algorithm.

1. Matlab will compute the solution to Ax = b using its own (more

efficient solvers) with the command A\b

2. Our algorithm contains lots of for loops. A peculiarity of Matlab makes

for loops very slow, but vector or matrix operations very fast. The

vector or matrix operations are compiled. However, each step in our

algorithm (including each loop of the for loop) must first be interpreted

before execution.

3. There are fundamental problems with Gaussian elimination.

 - 11 -

Numerical Methods in Chemical Engineering

2.5 Problems with Gaussian elimination

We can modify the algorithm to work out how many subtraction +

multiplication operations it performs for a given size of matrix A.

NumOperations = 0;

%Gaussian elimination

for column=1:(N-1)

 %work on all the rows below the diagonal element

 for row = (column+1):N

 %work out the value of d

 d = A(row,column)/A(column,column);

 %do the row operation

 A(row,column:end) = A(row,column:end)-

 ... d*A(column,column:end);

 b(row) = b(row)-d*b(column);

 NumOperations = NumOperations+N-column+1;

 end%loop through rows

end %loop through columns
- 12 -

Numerical Methods in Chemical Engineering

2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

Number of equations

N
um

be
r o

f o
pe

ra
tio

ns

Gaussian Elimination
Back substitution

y = 0.33*x3 - 0.33*x

y = 0.5*x2 - 0.5*x

We find that the number of operations required to perform Gaussian

elimination is O(N3), where N is the number of equations. For large systems

of equations Gaussian elimination is very inefficient – even for the fastest

super computer!

On the other hand, the number of operations required for back-substitution

scales with O(N2). Back substitution is much more efficient for large systems

than Gaussian elimination.

 - 13 -

Numerical Methods in Chemical Engineering

2.6 LU decomposition

Suppose we want to solve the same set of equations but with several different

right hand sides. We don’t want to use the expense of Gaussian elimination

every time we solve the equations, ideally we would like to only do the

Gaussian elimination once.

e.g. Ax1 = b1 , Ax2 = b2 , Ax3 = b3

which may be written as

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

MMM

MMM

MMM

MMM

321321 bbbxxxA

If by Gaussian elimination, we could factor our matrix A into two matrices, L

and U, such that

LUA
AAA
AAA
AAA

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

*00
**0

1**
01*
001

333231

232221

131211

, (2-7)

we could then solve for each right hand side using only forward, followed by

backward substitution.

 - 14 -

Numerical Methods in Chemical Engineering

 Ax = b

LUx = b

let y =Ux

 Ly = b (Forward substitution)

Then solve

 Ux = y (Backward substitution)

Lets start with the matrix A from our previous example

When we eliminate the element A21 (subtract d21 = A21/A11 times row 1 from

row 2), we can keep multiplying by a matrix that undoes this row operation,

so that the product remains equal to A.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

333231

132123122122

131211

21

333231

232221

131211

0
100
01
001

AAA
AdAAdA

AAA
d

AAA
AAA
AAA

When we eliminate the element A31 (subtract d31 = A31/A11 times row 1 from

row 3), we can multiply by a matrix that undoes this row operation, so that

the product remains equal to A.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−=−=
−=−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1231333312313232

1321232312212222

131211

31

21

333231

232221

131211

''0
''0

10
010
001

100
01
001

AdAAAdAA
AdAAAdAA

AAA

d
d

AAA
AAA
AAA

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−=−=
−=−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1231333312313232

1321232312212222

131211

31

21

333231

232221

131211

''0
''0

10
01
001

AdAAAdAA
AdAAAdAA

AAA

d
d

AAA
AAA
AAA

 - 15 -

Numerical Methods in Chemical Engineering

When we eliminate the element A32 (subtract d32 = A32/A22 times row 2 from

row 3), we can keep multiply by a matrix that undoes this row operation, so

that the product remains equal to A.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−=⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

''''00
''0

10
010
001

10
01
001

23323333

2322

131211

3231

21

333231

232221

131211

AdAA
AA
AAA

dd
d

AAA
AAA
AAA

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−=⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

''''00
''0

1
01
001

23323333

2322

131211

3231

21

333231

232221

131211

AdAA
AA
AAA

dd
d

AAA
AAA
AAA

I.e. we have performed LU decomposition.

In practice we don't bother recording the matrices, we can just write down the

matrix L.

 - 16 -

Numerical Methods in Chemical Engineering

2.6.1 What happens if we have to do a row swap during the Gaussian

elimination?

Suppose we had reached the following stage in the elimination process

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

''0
''0

10
01
001

3332

2322

131211

31

21

333231

232221

131211

AA
AA
AAA

d
d

AAA
AAA
AAA

and we needed to exchange rows 2 and 3.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

''0
''0

01
10
001

010
100
001

2322

3332

131211

21

31

333231

232221

131211

AA
AA
AAA

d
d

AAA
AAA
AAA

This is a
permutation
matrix

Multiplying by a permutation matrix will swap the rows of a matrix. The

permutation matrix is just an identity matrix, whose rows have been

interchanged.

We can then continue as normal.

 - 17 -

Numerical Methods in Chemical Engineering

2.6.2 A recipe for doing LU decomposition

1. Write down a permutation matrix, P (which is initially the identity matrix)

 P =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
010
001

2. Write down the Matrix you want to decompose

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

021
112
110

3. Starting with column 1, row swap to promote the largest value in the

column to the diagonal. Do exactly the same row swap to the Matrix P.

 P =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

021
110
112

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
001
010

4. Eliminate all the elements below the diagonal in column 1. Record the

multiplier d used for elimination where you create the zero.

 Here we did row 3 = row 3 - 0.5*row 1
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

− 5.05.10
110
112

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

− 5.05.15.0
110
112

 - 18 -

Numerical Methods in Chemical Engineering

5. Move onto the next column. Swap rows to move the largest element to the

diagonal. (Do the same row swap to P)

 P =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

110
5.05.15.0

112

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

001
100
010

6. Eliminate the elements below the diagonal

 row 3 = row 3 - 2/3*row 2
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

3/43/20
5.05.15.0

112

7. Repeat 5 and 6 for all columns

8. Write down L, U and P

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

3/43/20
5.05.15.0

112

implies

U = L =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

3/400
5.05.10

112

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

13/20
015.0
001

and P =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

001
100
010

 - 19 -

Numerical Methods in Chemical Engineering

2.7 Summary

• Gaussian elimination can be slow (the number of operations required to

do Gaussian elimination is O(N3) where N is the number of equations.

• Back substitution only takes O(N2)

• If we want to solve the set of equations repeatedly with different right

hand sides, LU decomposition means that we don't have to do Gaussian

elimination every time. This is a considerable saving.

• Matlab has inbuilt Matlab routines for solving linear equations (\) and

LU decomposition (LU). They will generally be better than any you

write yourself

 - 20 -

Numerical Methods in Chemical Engineering

2.8 Appendix: Code to do Gaussian elimination with partial

pivoting

function [x] = GaussianEliminate(A,b)
% Solves Ax = b by Gaussian elimination

%work out the number of equations
N = length(b);
%Gaussian elimination
for column=1:(N-1)

 %swap rows so that the row we are using to eliminate
 %the entries in the rows below is larger than the
 %values to be eliminated.
 [dummy,index] = max(abs(A(column:end,column)));
 index=index+column-1;
 temp = A(column,:);
 A(column,:) = A(index,:);
 A(index,:) = temp;
 temp = b(column)
 b(column)= b(index);
 b(index) = temp;

 %work on all the rows below the diagonal element
 for row =(column+1):N

 %work out the value of d
 d = A(row,column)/A(column,column);

 %do the row operation (result displayed on screen)
 A(row,column:end) = A(row,column:end)-d*A(column,column:end) ;
 b(row) = b(row)-d*b(column);
 end%loop through rows
end %loop through columns

%back substitution

for row=N:-1:1

x(row) = b(row);

 for i=(row+1):N
 x(row) = x(row)-A(row,i)*x(i);
 end

x(row) = x(row)/A(row,row);

end

x = x'

return

 - 21 -

	Elimination methods for solving linear equations
	Overview
	Gaussian elimination
	Writing the program - Gaussian elimination
	Writing the program - Back substitution

	Partial pivoting
	Why we shouldn’t use this algorithm?
	Problems with Gaussian elimination
	LU decomposition
	What happens if we have to do a row swap during the Gaussian
	A recipe for doing LU decomposition

	Summary
	Appendix: Code to do Gaussian elimination with partial pivot

