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The basic balance laws

Chemical reactions satisfy the balance laws

ẋ = Sv

where

x = (x1, x2, · · · , xn)T

denotes the vector of concentrations of n chemical species, and

v = (v1, v2, · · · , vm)T

denotes the vector of fluxes corresponding to m chemical reactions

within these species.

The n×m matrix S is called the stochiometric matrix.
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For example, the chemical reaction

A + 2B → 3C + D

will have the stochiometric matrix

S =






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In the first part of the talk the reversible reaction

A + 2B ↔ 3C + D

will be described by the stochiometric matrix

S =















−1 1

−2 2

3 −3

1 −1















This convention implies that the fluxes are all non-negative:

vi ≥ 0, i = 1, · · · , m
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The sequence of chemical reactions

2A + B → C → A + 2B → D → 2A + B

has the stochiometric matrix

S =















−2 1 −1 2

−1 2 −2 1

1 −1 0 0

0 0 1 −1
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
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






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In many cases of interest the total vector of fluxes can be split into

a vector of internal fluxes vi and a vector of exchange fluxes ve,

in which case the stochiometric matrix S is correspondingly split as

S =
[

Si Se

]

The vector ve will be the vector of fluxes entering or leaving the

reactor vessel, or cell.
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Consider the reactions

→ A

A + B → C

C →

having stochiometric matrix

S =









−1 | 1 0

−1 | 0 0

1 | 0 −1








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Intermezzo

• The stochiometric matrix S does not directly define a graph.

• A graph can be defined by equating the complete reactant, as

well as the complete product, of any reaction with a vertex of

the graph (see e.g. the work of Feinberg and co-workers).

• Chemical reaction networks can be also directly modelled as a

Petri-net with the chemical species corresponding to the

places, and the reactions corresponding to the transitions.
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The balance laws

ẋ = Sv

do not yet determine the dynamics of the chemical reaction

network.

Complete dynamics in terms of the concentration vector x is given

once the internal fluxes vi are specified as a function of x (the

reaction rates):

vi = vi(x)

Then we obtain the set of ODEs

ẋ = Sivi(x) + Seve

One of the problems in metabolic networks is that the rate

functions are often unknown and difficult to identify.
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Basic properties: conserved quantities

The left-kernel of the stochiometric matrix determines the

conserved quantities. Indeed, if k is a n-dimensional row-vector

satisfying

kS = 0

then
d

dt
(kx) = kSv = 0,

irrespective of the precise form of the fluxes. Thus kx is a

conserved quantity of the chemical reaction network.

Note that the existence of such a k will imply that the system is

not completely controllable.
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Linear combinations of concentration variables are sometimes

called metabolic pools.

A more general version is obtained for k satisfying

kSi = 0

in which case
d

dt
(kx) = k

[

Si Se

]

v = kSeve,

expressing that the evolution of kx only depends on the exchange

fluxes ve.
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Alternatively, if k is satisfying

kSe = 0

then
d

dt
(kx) = k

[

Si Se

]

v = kSivi,

expressing that the evolution of kx is independent of the exchange

fluxes ve.
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One special type of conserved quantities is specified by the

expression of the chemical species involved in the reactions in

chemical elements. For example, in the chemical reaction

2H2 + O2 → 2H2O

the number of oxygen and hydrogen elements is preserved. This is

reflected by the fact that


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0 2 1

2 0 2
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



= ES = 0
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Steady-state analysis

Steady-state solutions are solution for which ẋ = 0, or equivalently

the flux balance equation

Sv = 0

The steady-state solutions vss are thus determined by the

right-kernel of S. This is primarily of interest whenever there are

exchange fluxes ve.
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Steady-state analysis is quite similar to steady-state analysis of a

linear system

ẋ = Ax + Bu

which leads to the consideration of

Axss + Buss = 0

which usually can be solved as

xss = −A−1Buss

together with an input-output relation (the static gain)

yss = Cxss = −CA−1Buss
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Somewhat similarly, the equation

[

Si Se

]

vss = 0

can be solved for part of the vector of steady-state fluxes vss as

function of the complementary part.
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Singular value decomposition

One way of trying to get a grip on the most important reactions in

a chemical reaction network is by applying a singular value

decomposition to the stochiometric matrix S:

S = UΣV T

where U is an n× n orthonormal matrix, and V is an m×m

orthonormal matrix, while Σ consists of a diagonal matrix and a

zero block, whose diagonal elements are ordered in a decreasing

sequence, and are called the singular values σ1, σ2, · · · , σr.
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Then the balance laws are written as

ẋ = UΣV T v

and defining x = Uz and v = V w this can be rewritten as

ż = Σw

Drawback is that in general the transformed concentration vector z

and the transformed flux vector w does not have any physical

interpretation. Furthermore, the positivity conditions on the flux

vector v are lost in general.
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Convex analysis

Consider the flux balance equation

Sv = 0

together with the positivity conditions (componentwise)

v ≥ 0

Together they describe a polyhedron (the flux cone) in R
m.

This may be sharpened by imposing maximality conditions on the

flux components:

0 ≤ vi ≤ vi,max, i = 1, · · · , m
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This flux cone has extremal rays pj , j = 1, · · · , l, and thus any

steady-state flux vector can be represented as

vss = α1p1 + · · ·+ αlpl, 0 ≤ αi ≤ αi,max, i = 1, · · · , m

The vectors p1, · · · , pl are called the extreme pathways.

(Sometimes also equivalently, -as long as the exchange fluxes are

non-negative-, called elementary modes.)
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The pathway matrix

P =
[

p1 p2 · · · pl

]

provides much structural information about the chemical reaction

network.

One can also look for optimal flux vectors in the flux cone

(where optimal is defined with respect to some, say, linear function

of the fluxes).
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Metabolic control analysis

Suppose the internal fluxes v are expressed as functions of the

concentration vector x and parameters p:

vi = vi(x, p)

then the steady-state solutions are determined as

Sivi
ss(x, p) + Seve

ss = 0

Metabolic flux analysis is concerned with a sensitivity analysis of vi
ss

with respect to p (and possibly ve
ss).

Thus it is comparable to shaping the static gain of an

input-state-output system.
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How to express the rate equations ?

One possibility is mass action kinetics.

The reversible reaction

A + B ↔ C

is a combination of the forward reaction

A + B → C

with rate equation rf = kfab, and the reverse reaction

A + B ← C

with rate equation rr = krc.
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The net rate is thus the mass-action kinetics

v = rf − rr = kfab− krc

More generally, the reversible reaction

mA + nB ↔ pC + qD

has net reaction rate

v = kfambn − krc
pdq
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At equilibrium (assuming no exchange fluxes)

kfaeqbeq = krceq

The constant

Keq =
ceq

aeqbeq

=
kf

kr

is called the equilibrium constant.
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On the thermodynamical perspective

Gibbs law is expressed as

dU = TdS − PdV + Σµi(n)dni

with U the total energy, and

n = (n1, n2, · · · , nk)

the (mole) numbers of chemical species involved in the reactions,

and

µ = (µ1, µ2, · · · , µk)

the chemical potentials of these species.

Typical example of a chemical potential

µi = ci(T, P ) + RT ln
ni

V
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This also constitutes one of the starting points of port-Hamiltonian

systems theory, which starts off with

dH

dt
= eT

RfR + eT
P fP

where fR, eR are the flow and effort variables corresponding to the

power-dissipating port, and fP , eP are the flow and effort variables

corresponding to the external port.

Furthermore, with x being the state variables, and ∇H(x) the

vector of partial derivatives of the Hamiltonian H

dH

dt
= ∇H(x)ẋ

The vectors eS = ∇H(x), fS = −ẋ are the flow and effort variables of

the port connected to the energy-storing elements.
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In fact, in the port-Hamiltonian description all vectors of flow and

effort variables

fS , eS , fR, eR, fP , eP

are related through a Dirac structure, which is power-conserving:

eT
S fS + eT

RfR + eT
P fP = 0

Furthermore, the resistive port is terminated by a resistive relation

R(fR, eR) = 0, eT
RfR ≤ 0

and the energy-storing port is terminated by

fS = −ẋ, eS = ∇H(x)
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Let us for chemical reactions now concentrate on the ’chemical

reaction part’ of Gibbs law

dG = Σµi(n)dni

with G the Gibbs free energy.

We would like to express the change in mole numbers ṅ (the flow

variables) as a function of µ(n) (the effort variables).

Or better, we want to express the flux variables v as functions of

the vector of so-called chemical affinities

A = ST µ

(Note that µ(n)T ṅ = AT v.) This will define the dynamics on R
m,

the space of reaction extents.

In general (far from thermodynamical equilibrium) this is not

possible, e.g., it is not possible for mass action kinetics.
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In case of e.g. mass action kinetics (and some other cases) we can

however do the following (see the work of Oster, Perelson and

Katchalsky).

Consider the stochiometric matrix S corresponding to reversible

reactions.

Write S = SP − SR, where

SR stochiometric matrix corresponding to reactants

SP stochiometric matrix corresponding to products
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Example: The stochiometric matrix

S =















−2 1 −1 2

−1 2 −2 1

1 −1 0 0

0 0 1 −1















corresponding to the reactions

2A + B ↔ C ↔ A + 2B ↔ D → 2A + B

is split into

SR =















2 0 1 0

1 0 2 0

0 1 0 0

0 0 0 1















, SP =















0 1 0 2

0 2 0 1

1 0 0 0

0 0 1 0














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Define the forward and backward chemical affinities





Af

Ar



 =





ST
R

ST
P



 µ =
[

SR SP

]T

µ

while we rewrite the mass balance equations as

ẋ =
[

SR SP

]





vf

vr





where




vf

vr



 =





−I

I



 v
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The dual relation is

A =
[

−I I

]





Af

Ar



 = −Af + Ar = ST µ

Now the net rate equation is

v = rf − rr

where rf can be expressed as a function of Af (and involving the

coefficients in SR) and rr can be expressed as function of Ar (and

the coefficients in SP ).

It can then be shown that mass-action kinetics is passive, and thus

corresponds to a kind of resistive relation.
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Reaction-diffusion systems

In some cases it is not appropriate to model the chemical reactions

with a uniform concentration vector x; instead one has to take

diffusion phenomena into account.

Historical intermezzo at the Centre Interfacultaire Bernoulli:

Daniel Bernoulli, founding father of (among others) fluid dynamics

and diffusion models.

Figure 1: Daniel Bernoulli, born in Groningen in 1700
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Daniel Bernoulli was born in 1700 in Groningen as son of Johann

Bernoulli, professor of mathematics at the University of Groningen.

Johann formulated in 1696 the Brachistochrone problem,

published its solution in 1697 (with competing solutions provided

by his elder brother Jakob, l’ Hôpital, Newton, Leibniz, ..), and

thus became one of the founding fathers of the Calculus of

Variations (and of Optimal Control !)

Johann returned with his family in 1705 to Basel, succeeding his

brother Jakob.

Figure 2: Johann Bernoulli, professor in Groningen from 1695-1705
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Figure 3: Artist’s impression of the brachistochrone, erected in 1997

at the Zernike campus of the university of Groningen; celebrating the

300 year anniversary of the brachistochrone problem
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Figure 4: The Bernoulli’s in carton board; at the entrance of the

building housing the mathematics department: the Bernoulli-borg
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Consider a diffusion system on a spatial domain Z ⊂ R
3, with

spatially distributed concentration

x : Z → R

Consider the infinite-dimensional Dirac structure (in vector calculus

notation)

fS = div e− u

f = grad ex

y = eS

with boundary variables (defined on ∂Z)

fb = e× n, eb = ex



Introductory survey on chemical reaction networks, Lausanne, June 2009 40

It follows that

eT
S fS + eT f + yT u + eT

b fb = 0

Consider now the constitutive relations for the energy-storage:

ẋ = −fS , eS = ∇H(x),H =

∫

Z

H(x(z))dz

together with the following constitutive relations for

power-dissipation

e = −R(z)f, R(z) = RT (z) ≥ 0
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Then we obtain the diffusion system

ẋ = div (R(z)grad∇H(x)) + u

y = ∇H(x)

This describes a diffusion system (in the spatially distributed

concentration vector x(z), where u and y are the distributed inputs

and outputs.
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It defines a distributed-parameter port-Hamiltonian system,

satisfying the energy-balance

d

dt
H = −

∫

Z

fT R(z)fdz +

∫

Z

yT udz +

∫

∂Z

eT
b fb

Chemical reactions may now be added through the vector of

distributed inputs u, that is, by substituting u(z) = F (x(z)), where F

represents the chemical reaction rate equations.

Alternative Spatially discretize the reaction-diffusion system in a

structure-preserving manner to a finite-dimensional

compartmental model.
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Concluding Remarks

• Going back to the basics of chemical reaction networks for the

analysis and control of large-scale networks.

• Relations to port-Hamiltonian systems theory.

• Use of these models for stability and robustness analysis (see

e.g. work of Arcak and Sontag).

See www.math.rug.nl/˜arjan for further info.

See also the forthcoming book

Modeling and Control of Complex Physical Systems; the

Port-Hamiltonian Approach, Geoplex consortium, Springer, 2009.


