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Appendix D

Vector Analysis

The following conventions are used in this appendix and throughout the book:

f, g, φ, ψ are scalar functions of x, t;
A,B,C,D are vector functions of x, t;
A = |A| ≡

√
A ·A is the magnitude or length of the vector A;

êA ≡ A/A is a unit vector in the A direction;
x is the vector from the origin to the point (x, y, z);
T,W, AB, etc., are dyad (second rank tensor) functions of x, t that will

be called simply tensors;
I is the identity tensor or unit dyad;
TT is the transpose of tensor T (interchange of indices of the tensor

elements), a tensor;
tr(T) is the trace of the tensor T (sum of its diagonal elements), a scalar;
det(T) ≡ ‖T‖ is the determinant of the tensor T (determinant of the

matrix of tensor elements), a scalar.

D.1 Vector Algebra

Basic algebraic relations:

A + B = B + A, commutative addition (D.1)
A + (B + C) = (A + B) + C, associative addition (D.2)
A−B = A + (−B), difference (D.3)
fA = Af, commutative scalar multiplication (D.4)
(f + g)A = fA + gA, distributive scalar multiplication (D.5)
f(A + B) = fA + fB, distributive scalar multiplication (D.6)
f(gA) = (fg)A, associative scalar multiplication (D.7)
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Dot product:

A ·B = 0 implies A = 0 or B = 0, or A ⊥ B (D.8)
A ·B = B ·A, commutative dot product (D.9)
A · (B + C) = A ·B + A ·C, distributive dot product (D.10)
(fA) · (gB) = fg(A ·B), associative scalar, dot product (D.11)

Cross product:

A×B = 0 implies A = 0 or B = 0, or A ‖ B (D.12)
A×B = −B×A, A×A = 0, anti-commutative cross product (D.13)
A×(B + C) = A×B + A×C, distributive cross product (D.14)
(fA)×(gB) = fg(A×B), associative scalar, cross product (D.15)

Scalar relations:

A ·B×C = A×B ·C = (C×A) ·B, dot-cross product (D.16)
(A×B) · (C×D) = (A ·C)(B ·D)− (A ·D)(B ·C) (D.17)
(A×B) · (C×D) + (B×C) · (A×D) + (C×A) · (B×D) = 0 (D.18)

Vector relations:

A×(B×C) = B(A ·C)−C(A ·B), bac− cab rule
= (C×B)×A = A · (CB−BC) (D.19)

A×(B×C) + B×(C×A) + C×(A×B) = 0 (D.20)
(A ·B)C = A · (BC), associative dot product (D.21)
(A×B)×(C×D) = C(A×B ·D)−D(A×B ·C)

= B(C×D ·A)−A(C×D ·B) (D.22)

Projection of a vector A in directions relative to a vector B:

A = A‖(B/B) + A⊥ = A‖b̂ + A⊥ (D.23)

b̂ ≡ B/B, unit vector in B direction (D.24)
A‖ ≡ B ·A/B = b̂ ·A, component of A along B (D.25)

A⊥ ≡ −B×(B×A)/B2, component of A perpendicular to B

= −b̂×(b̂×A) (D.26)

D.2 Tensor Algebra

Scalar relations:

I : AB ≡ (I ·A) ·B = A ·B (D.27)
AB : CD ≡ A · (B ·C)D = (B ·C)(A ·D)
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Figure D.1: Schematic illustration of dot, cross and dot-cross products of vec-
tors.
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= D ·AB ·C = B ·CD ·A (D.28)
I : T = tr(T), T : T ≡ |T|2 (D.29)
T : AB = (T ·A) ·B = B ·T ·A (D.30)
AB : T = A · (B ·T) = B ·T ·A (D.31)
B×T : W = −(T ·W)T : B×I (D.32)

Vector relations:

I ·A = A · I = A (D.33)
A ·TT = T ·A, TT ·A = A ·T (D.34)
A · (CB−BC) = A×(B×C)

= B(A ·C)−C(A ·B), bac− cab rule (D.35)
(A×C) ·T = A · (C×T) = −C · (A×T) (D.36)
T · (A×C) = (T×A) ·C = −(T×C) ·A (D.37)
A · (T×C) = (A ·T)×C = −C×(A ·T) (D.38)
(A×T) ·C = A×(T ·C) = −(T ·C)×A (D.39)
A · (T×C)−C · (T×A) = [I tr(T)− T] · (A×C) (D.40)
(A×T) ·C− (C×T) ·A = (A×C) · [I tr(T)− T] (D.41)

Tensor relations:

I ·AB = (I ·A)B = AB, AB · I = A(B · I) = AB (D.42)
I×A = I×A (D.43)
A×(BC) = (A×B)C, (AB)×C = A(B×C) (D.44)
(A×B)×I = I×(A×B) = BA−AB (D.45)
(A×T)T = −TT×A, (T×A)T = −A×TT (D.46)
(A×T)− (A×T)T = I×[A tr(T)− T ·A] (D.47)
(T×A)− (T×A)T = I×[A tr(T)−A ·T] (D.48)
TS = 1

2 (T + TT), symmetric part of tensor T (D.49)
TA = 1

2 (T− TT), anti-symmetric part of tensor T (D.50)
B×TS×B = B2TS − (BB ·TS + TS ·BB)

− (IB2 −BB)(IB2 −BB) ·TS/B
2 −BB(BB ·TS)/B2 (D.51)

D.3 Derivatives

Temporal derivatives:

dA
dt

is a vector tangent to the curve defined byA(t) (D.52)

d

dt
(fA) =

df

dt
A + f

dA
dt

(D.53)
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d

dt
(A + B) =

dA
dt

+
dB
dt

(D.54)

d

dt
(A ·B) =

dA
dt
·B + A · dB

dt
(D.55)

d

dt
(A×B) =

dA
dt
×B + A×dB

dt
(D.56)

Definitions of partial derivatives in space (∇ ≡ ∂/∂x = del or nabla is the
differential vector operator):

∇f ≡ ∂f

∂x
, gradient of scalar function f , a vector — vector in direction

of and measure of the greatest rate of spatial change of f (D.57)

∇ ·A ≡ ∂

∂x
·A, divergence of vector function A, a scalar —

divergence (∇ ·A > 0) or convergence (∇ ·A < 0) of A lines (D.58)

∇×A ≡ ∂

∂x
×A, curl (or rotation) of vector function A, a vector1—

vorticity of A lines (D.59)

∇2f ≡∇ ·∇f, del square or Laplacian (divergence of gradient)
derivative of scalar function f , a scalar, which is sometimes
written as ∆f — three-dimensional measure of curvature of f
(f is larger where ∇2f < 0 and smaller where ∇2f > 0) (D.60)

∇2A ≡ (∇ ·∇)A =∇(∇ ·A)−∇×(∇×A), Laplacian derivative
of vector function A, a vector (D.61)

For the general vector coordinate x ≡ xêx +yêy +zêz and |x| ≡
√
x2 + y2 + z2:

∇ · x = 3, ∇ · (x/|x|) = 2/|x| (D.62)
∇×x = 0, ∇×(x/|x|) = 0 (D.63)
∇|x| = x/|x|, ∇(1/|x|) = −x/|x|3 (D.64)
∇x = I (D.65)
(A · ∇)(x/|x|) = [A− (x ·A)x/|x|2]/|x| ≡ A⊥/|x| (D.66)
∇2(1/|x|) ≡∇ ·∇(1/|x|) = −∇ · (x/|x|3) = −4πδ(x) (D.67)

1Rigorously speaking, the cross product of two vectors and the curl of a vector are pseudo-
vectors because they are anti-symmetric contractions of second rank tensors — see tensor
references at end of this appendix.
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First derivatives with scalar functions:

∇(f + g) =∇f +∇g (D.68)
∇(fg) = (∇f)g + f∇g =∇(gf) (D.69)
∇(fA) = (∇f)A + f∇A (D.70)
∇ · fA =∇f ·A + f∇ ·A (D.71)
∇×fA =∇f×A + f∇×A (D.72)
∇ · fT =∇f ·T + f∇ ·T (D.73)
∇×fT =∇f×T + f∇×T (D.74)

First derivative scalar relations:

∇ · (A + B) =∇ ·A +∇ ·B (D.75)
∇ · (A×B) = B · ∇×A−A · ∇×B (D.76)
(B · ∇)(A ·C) = C · (B · ∇)A + A · (B · ∇)C

≡ CB :∇A + AB :∇C (D.77)
A · ∇B ·C−C · ∇B ·A ≡ (CA−AC) :∇B = (A×C) · ∇×B (D.78)
2A · ∇B ·C ≡ 2CA :∇B = A · ∇(B ·C) + C · ∇(B ·A)

−B · ∇(A ·C) + (B×C) · (∇×A)
+ (B×A) · (∇×C) + (A×C) · (∇×B) (D.79)

I :∇B =∇ ·B (D.80)
A×I :∇B = A · ∇×B (D.81)
A · ∇ ·T =∇ · (A ·T)−∇A : T =∇ · (A ·T)− T :∇A (D.82)

First derivative vector relations:

∇×(A + B) =∇×A +∇×B (D.83)
∇(A ·B) = A×(∇×B) + B×(∇×A) + (A · ∇)B + (B · ∇)A

= (∇A) ·B + (∇B) ·A (D.84)
∇(B2/2) ≡∇(B ·B/2) = B×(∇×B) + (B · ∇)B = (∇B) ·B (D.85)
(B · ∇)(A×C) = (B · ∇)A×C + A×(B · ∇)C (D.86)
∇ ·AB = (∇ ·A)B + (A · ∇)B = (∇ ·A)B + A · (∇B) (D.87)
∇ · I = 0 (D.88)
∇ · (I×A) =∇×A (D.89)
A×(∇×B) = (∇B) ·A−A · (∇B) = (∇B) ·A− (A · ∇)B (D.90)
∇×(A×B) = A(∇ ·B)−B(∇ ·A) + (B · ∇)A− (A · ∇)B

=∇ · (BA−AB) (D.91)
A · ∇B×C + C×∇B ·A = C×[A×(∇×B)] (D.92)
A · ∇B×C−C · ∇B×A = [(∇ ·B)I−∇B] · (A×C) (D.93)
A×∇B ·C−C×∇B ·A = (A×C) · [(∇ ·B)I−∇B] (D.94)
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First derivative tensor relations:

I · ∇B =∇B, ∇B · I =∇B (D.95)
∇×AB = (∇×A)B−A×∇B (D.96)
∇(A×B) =∇A×B−∇B×A (D.97)
A×∇B +∇B×A

= I×[(∇ ·B)A− (∇B) ·A] + [A · (∇×B)]I−A(∇×B)
= I×[(∇ ·B)A−A · (∇B)] + [A · (∇×B)]I− (∇×B)A (D.98)

∇B×A + (A×∇B)T = [A · (∇×B)]I−A(∇×B) (D.99)
A×∇B + (∇B×A)T = [A · (∇×B)]I− (∇×B)A (D.100)
A×∇B− (A×∇B)T = I×[(∇ ·B)A− (∇B) ·A] (D.101)
∇B×A− (∇B×A)T = [(∇ ·B)A−A · (∇B)]×I (D.102)

Second derivative relations:

∇ ·∇f ≡ ∇2f (D.103)
∇×∇f = 0 (D.104)
∇ ·∇f×∇g = 0 (D.105)
∇ ·∇A ≡ ∇2A =∇(∇ ·A)−∇×(∇×A) (D.106)
∇ ·∇×A = 0 (D.107)
∇ · (B · ∇)A = (B · ∇)(∇ ·A)− (∇×A) · (∇×B) (D.108)
∇×[(A · ∇)A]

= (A · ∇)(∇×A) + (∇ ·A)(∇×A)− [(∇×A) · ∇]A (D.109)

Derivatives of projections of A in B direction [b̂ ≡ B/B, A = A‖b̂ + A⊥,
A‖ ≡ b̂ ·A, A⊥ ≡ − b̂×(b̂×A), (b̂ · ∇)b̂ = − b̂×(∇×b̂) ≡ κ]:

∇ ·A = (A‖/B)(∇ ·B) + (B · ∇)(A‖/B) +∇ ·A⊥ (D.110)

∇ ·A⊥ = −A⊥ · [∇ lnB + (b̂ · ∇)b̂ ]− (1/B) b̂ · ∇×(B×A) (D.111)
b̂ · ∇A · b̂ ≡ b̂b̂ :∇A = (b̂ · ∇)A‖ −A⊥ · (b̂ · ∇)b̂

= A · ∇ lnB − (1/B)b̂ · ∇×(B×A) +∇ ·A− (A‖/B)(∇ ·B) (D.112)

For A⊥ = (1/B2) B×∇f, b̂ · ∇×(B×A⊥) = (b̂ · ∇f)(b̂ · ∇×b̂) (D.113)

D.4 Integrals

For a volume V enclosed by a closed, continuous surface S with differential
volume element d3x and differential surface element dS ≡ n̂ dS where n̂ is the
unit normal outward from the volume V , for well-behaved functions f, g,A,B
and T:∫

V

d3x∇f =
∫
©
∫
S

dS f, (D.114)

DRAFT 11:26
October 11, 2002 c©J.D Callen, Fundamentals of Plasma Physics



APPENDIX D. VECTOR ANALYSIS 8∫
V

d3x∇ ·A =
∫
©
∫
S

dS ·A, divergence or Gauss’ theorem, (D.115)∫
V

d3x∇ ·T =
∫
©
∫
S

dS ·T, (D.116)∫
V

d3x∇×A =
∫
©
∫
S

dS×A, (D.117)∫
V

d3x f∇2g =
∫
V

d3x∇f · ∇g +
∫
©
∫
S

dS · f∇g,

Green’s first identity, (D.118)∫
V

d3x (f∇2g − g∇2f) =
∫
©
∫
S

dS · (f∇g − g∇f),

Green’s second identity, (D.119)∫
V

d3x [A · ∇×(∇×B)−B · ∇×(∇×A)]

=
∫
©
∫
dS · [B×(∇×A)−A×(∇×B)],

vector form of Green’s second identity. (D.120)

The gradient, divergence and curl partial differential operators can be defined
using integral relations in the limit of small surfaces ∆S encompassing small
volumes ∆V , as follows:

∇f ≡ lim
∆V→0

(
1

∆V

∫
©
∫

∆S

dS f
)

gradient, (D.121)

∇ ·A ≡ lim
∆V→0

(
1

∆V

∫
©
∫

∆S

dS ·A
)

divergence, (D.122)

∇×A ≡ lim
∆V→0

(
1

∆V

∫
©
∫

∆S

dS×A
)

curl. (D.123)

For S representing an open surface bounded by a closed, continuous contour C
with line element d` which is defined to be positive when the right-hand-rule
sense of the line integral around C points in the dS direction:∫∫

S

dS×∇f =
∮
C

d`f, (D.124)∫∫
S

dS · ∇×A =
∮
C

d` ·A, Stokes’ theorem, (D.125)∫∫
S

(dS×∇)×A =
∮
C

d`×A, (D.126)∫∫
S

dS · (∇f×∇g) =
∮
C

d` · f∇g =
∮
C

f dg = −
∮
C

g df,

Green’s theorem. (D.127)

The appropriate differential line element d`, surface area dS, and volume d3x
can be defined in terms of any three differential line elements d`(i), i = 1, 2, 3
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that are linearly independent [i.e., d`(1) · d`(2)×d`(3) 6= 0] by

d` = d`(i), i = 1, 2, or 3, differential line element, (D.128)
dS = d`(i)×d`(j), differential surface area, (D.129)
d3x = d`(1) · d`(2)×d`(3), differential volume. (D.130)

In exploring properties of fluids and plasmas we often want to know how
the differential line, surface and volume elements change as they move with the
fluid flow velocity V. In particular, when taking time derivatives of integrals,
we need to know what the time derivatives of these differentials are as they
are carried along with a fluid. To determine this, note first that if the flow is
uniform then all points in the fluid would be carried along in the same direction
at the same rate; hence, the time derivatives of the differentials would vanish.
However, if the flow is nonuniform, the differential line elements and hence all
the differentials would change in time. To calculate the time derivatives of the
differentials, consider the motion of two initially close points x1,x2 as they are
carried along with a fluid flow velocity V(x, t). Using the Taylor series expansion
V(x2, t) = V(x1, t)+(x2−x1) · ∇V+· · · and integrating the governing equation
dx/dt = V over time, we obtain

x2 − x1 = x2(t = 0)− x1(t = 0) +
∫ t

0

dt′ (x′2 − x′1) · ∇V + · · · (D.131)

in which x2(t = 0) and x1(t = 0) are the initial positions at t = 0. Taking the
time derivative of this equation and identifying the differential line element d`
as x2−x1 in the limit where the points x2 and x1 become infinetesimally close,
we find

d ˙̀ ≡ d

dt
(d`) = d` · ∇V. (D.132)

The time derivative of the differential surface area dS can be calculated by
taking the time derivative of (D.129) and using this last equation to obtain

dṠ ≡ d

dt
(dS) = d ˙̀ (1)×d`(2) + d`(1)×d ˙̀ (2)

= d`(1) · ∇V×d`(2)− d`(2) · ∇V×d`(1)
= (∇ ·V) dS−∇V · dS (D.133)

in which (D.93) and (D.33) have been used in obtaining the last form. Similarly,
the time derivative of the differential volume element moving with the fluid is

d

dt
(d3x) = d ˙̀ (3) · dS + d`(3) · dṠ

= d`(3) · ∇V · dS + d`(3) · (∇ ·V)dS− d`(3) · ∇V · dS
= (∇ ·V) d3x, (D.134)

which shows that the differential volume in a compresssible fluid increases or
decreases according to whether the fluid is rarefying (∇ ·V > 0) or compressing
(∇ ·V < 0).
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D.5 Vector Field Representations

Any vector field B can be expressed in terms of a scalar potential ΦM and a
vector potential A:

B = −∇ΦM +∇×A, potential representation. (D.135)

The∇ΦM part of B represents the longitudinal or irrotational (∇×∇ΦM = 0)
component while the ∇×A part represents the transverse or solenoidal compo-
nent (∇ ·∇×A = 0). A vector field B that satisfies ∇×B = 0 is called a lon-
gitudinal or irrotational field; one that satisfies ∇ ·B = 0 is called a solenoidal
or transverse field. For a B(x) that vanishes at infinity, the potentials ΦM and
A are given by Green’s function solutions

ΦM (x) =
∫
d3x′

(∇ ·B)x′

4π|x− x′| , A(x) =
∫
d3x′

(∇×B)x′

4π|x− x′| . (D.136)

When there is symmetry in a coordinate ζ (i.e., a two or less dimensional
system), a solenoidal vector field B can be written in terms of a stream function
ψ in such a way that it automatically satisfies the solenoidal condition∇ ·B = 0:

B =∇ζ×∇ψ = |∇ζ| êζ×∇ψ = −∇×ψ∇ζ, stream function form.
(D.137)

For this situation the vector potential becomes

A = −ψ∇ζ = −ψ |∇ζ| êζ . (D.138)

For a fully three-dimensional situation with no symmetry, a solenoidal vector
field B can in general be written as

B =∇α×∇β, Clebsch representation, (D.139)

In this representation α and β are stream functions that are constant along the
vector field B since B · ∇α = 0 and B · ∇β = 0.

D.6 Properties Of Curve Along A Vector Field

The motion of a point x along a vector field B is described by

dx
d`

=
B
B

= b̂ ≡ T̂, tangent vector (D.140)

in which d` is a differential distance along B. The unit vector b̂ is tangent to
the vector field B(x) at the point x and so is often written as T̂ — a unit tangent
vector.

The curvature vector κ of the vector field B is defined by

κ ≡ d2x
d`2

=
db̂
d`

= (b̂ · ∇)b̂ = − b̂×(∇×b̂), curvature vector (D.141)
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in which (D.85) has been used in the obtaining the last expression. The unit
vector in the curvature vector direction is defined by

κ̂ ≡ (b̂ · ∇)b̂ / |(b̂ · ∇)b̂|, curvature unit vector. (D.142)

The local radius of curvature vector RC is in the opposite direction from the
curvature vector κ and is defined by

RC ≡ −κ/|κ|2, κ = −RC/R
2
C , radius of curvature. (D.143)

Hence, |RC | ≡ RC = 1/|κ| is the magnitude of the local radius of curvature —
the radius of the circle tangent to the vector field B(x) at the point x.

A triad of orthogonal unit vectors (see Fig. D.2) can be constructed from the
tangent unit vector T̂ and an arbitrary unit vector N̂ normal (or perpendicular)
to the vector field B(x) at the point x:

T̂ ≡ b̂, N̂ and B̂ ≡ T̂×N̂ = b̂×N̂, Frenet unit vector triad (D.144)

in which B̂ is the binormal unit vector, the third orthogonal unit vector. The
component of a vector C in the direction of the vector field B is called the
parallel component: C‖ ≡ T̂ ·C = b̂ ·C. The component in the N̂ direction is
called the normal component: CN ≡ N̂ ·C. The component in the B̂ direction,
which is perpendicular to the T̂×N̂ plane, is called the binormal component:
CB ≡ B̂ ·C = T̂×N̂ ·C.

Consider for example the components of the curvature vector κ. Since
b̂ ·κ = 0, the curvature vector has no parallel component (κ‖ = 0) — the
curvature vector for the vector field B(x) is perpendicular to it at the point
x. The components of the curvature vector κ relative to a surface ψ(x) = con-
stant in which the vector field lies (i.e., B · ∇ψ = 0) can be specified as follows.
Define the normal to be in the direction of the gradient of ψ: N̂ ≡ ∇ψ/|∇ψ|.
Then, the components of the curvature vector perpendicular to (normal) and
lying within (geodesic) the ψ surface are given by

κn = N̂ ·κ =∇ψ ·κ/|∇ψ|, normal curvature, (D.145)

κg = B̂ ·κ = (b̂×∇ψ) ·κ/|b̂×∇ψ|, geodesic curvature. (D.146)

The torsion τ (twisting) of a vector field B is defined by

τ ≡ − dB̂

d`
= − (b̂ · ∇)(b̂×N̂), torsion vector. (D.147)

The binormal component of the torsion vector vanishes (τB ≡ B̂ · τ = 0). The
normal component of the torsion vector locally defines the scale length Lτ along
the vector B over which the vector field B(x) twists through an angle of one
radian:

Lτ ≡ 1/|τN|, τN ≡ − N̂ · dB̂

d`
= − N̂ · (b̂ · ∇)(b̂×N̂), torsion length. (D.148)
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B

B

B

curvature torsion

shear

Rc

Figure D.2: Properties (curvature, torsion, shear) of a spatially inhomogeneous
vector field B(x). The unit vector b̂ ≡ B/B = dx/d` = T̂ is locally tangent to
the vector field B. The unit normal N̂ is perpendicular to the vector field B,
shown here in the curvature direction. The binormal B̂ is orthogonal to both b̂
and N̂.
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If the unit normal N̂ is taken to be in the ∇ψ direction, the parallel com-
ponent of the torsion vector is equal to the geodesic curvature [τ‖ ≡ b̂ · τ =
(b̂×∇ψ) · (b̂ · ∇)b̂ / |b̂×∇ψ| ≡ κg].

The local shear ς (differential twisting motion, or nonplanar differential tan-
gential motion in the plane defined by b̂ = T̂ and N̂) in a vector field B is given
by the binormal component of the curl or rotation in the binormal unit vector:

ς ≡ B̂ · ∇×B̂ = (b̂×N̂) · ∇×(b̂×N̂) ≡ 1/LS , local shear. (D.149)

The shear length LS is defined as the scale length over which the vector field
B(x) shears through an angle of one radian. The parallel component of the
total curl or rotation of a vector field B is given by a combination of its torsion
and shear, and N̂ · ∇×N̂:

σ ≡ b̂ · ∇×b̂ = (b̂×N̂) · ∇×(b̂×N̂)− 2N̂ · (b̂ · ∇)(b̂×N̂) + N̂ · ∇×N̂

= ς + 2τN + N̂ · ∇×N̂, total rotation in B field. (D.150)

If the normal N̂ is taken to be in the ∇ψ direction, N̂ · ∇×N̂ = 0 and then

ς =
(b̂×∇ψ) · ∇×(b̂×∇ψ)

|b̂×∇ψ|2
≡ 1
LS

, local shear with N̂ ≡∇ψ/|∇ψ|,

(D.151)
and

σ ≡ b̂ · ∇×b̂ = ς + 2τN. (D.152)

In the absence of shear (ς = 0), this last relation yields τN = (1/2)b̂ · ∇×b̂ —
the torsion for “rigid body rotation” is just half the parallel component of the
rotation in the vector field B.

In most applied mathematics books the normal N̂ is taken to be in the curva-
ture vector direction (i.e., N̂ ≡ κ̂) instead of the∇ψ direction. Then, the parallel
component of the torsion vector also vanishes [τ‖ ≡ b̂ · τ = b̂×κ̂ · (b̂ · ∇)b̂ =
b̂×κ̂ ·κ = 0] and

τ ≡ τNN̂, for N̂ ≡ κ̂. (D.153)

For this case the interrelationships between the triad of unit vectors T̂, N̂, B̂ are
given by the Frenet-Serret formulas:

dT̂

d`
= κNN̂, T̂ ≡ B/B ≡ b̂,

dN̂

d`
= −κNT̂ + τNB̂, N̂ ≡ κ̂ = (b̂ · ∇)b̂ / |(b̂ · ∇)b̂|,

dB̂

d`
= −τNN̂, B̂ ≡ T̂×N̂ = b̂×κ̂.

(D.154)

The local shear ς and total rotation σ in the vector field B for this case are as
given above in (D.149) and (D.150), respectively, for a general unit normal N̂.
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D.7 Base Vectors and Vector Components

The three vectors e1, e2, e3, which are not necessarily orthogonal, can be used as
a basis for a three-dimensional coordinate system if they are linearly independent
(i.e., e1 · e2×e2 6= 0). The three reciprocal base vectors e1, e2, e3 are defined by

ei · ej = δij , (D.155)
where

δij ≡
{

1, i = j,
0, i 6= j,

Kronecker delta. (D.156)

The reciprocal base vectors can be written in terms of the original base vectors:

e1 =
e2×e3

e1 · (e2×e3)
, e2 =

e3×e1

e1 · (e2×e3)
, e3 =

e1×e2

e1 · (e2×e3)
. (D.157)

Or, in general index notation

ei = εijk
ej×ek

e1 · (e2×e3)
, i, j, k = permutations of 1, 2, 3 (D.158)

in which

εijk =

 +1 when i, j, k is an even permutation of 1, 2, 3
−1 when i, j, k is an odd permutation of 1, 2, 3

0 when any two indices are equal Levi-Civita symbol.
(D.159)

The reciprocal Levi–Civita symbol εijk is the same, i.e., εijk=εijk. These for-
mulas are also valid if the subscripts and subscripts are reversed. Thus, the
“original” base vectors could be the reciprocal base vectors ei and the “recip-
rocal” base vectors could be the original base vectors ei since both sets of base
vectors are linearly independent. Either set can be used as a basis for repre-
senting three-dimensional vectors.

The identity tensor can be written in terms of the base or reciprocal vectors
as follows:

I ≡
∑
i e
iei = e1e1 + e2e2 + e3e3

≡
∑
i eie

i = e1e1 + e2e2 + e3e3.
identity tensor (D.160)

This definition can be used to write any vector or operator in terms of either
its base or reciprocal vector components:

A = A · I = (A · e1)e1 + (A · e2)e2 + (A · e3)e3 =
∑
i

Aiei, Ai ≡ A · ei,

= (A · e1)e1 + (A · e2)e2 + (A · e3)e3 =
∑
j

Ajej , Aj ≡ A · ej ,

(D.161)
∇ ≡ I · ∇ = e1(e1 · ∇) + e2(e2 · ∇) + e3(e3 · ∇)

= e1(e1 · ∇) + e2(e2 · ∇) + e3(e3 · ∇). (D.162)
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The dot product between two vectors A and B is given in terms of their
base and reciprocal vector components by

A ·B =
∑
i

AiBi =
∑
i

AiB
i =

∑
ij

(ei · ej)AiBj =
∑
ij

(ei · ej)AiBj . (D.163)

Similarly, the cross product between two vectors is given by

A×B =
∑
ij

AiBj ei×ej =
∑
ijk

AiBj ek (e1 · e2×e3)

=
∑
ij

AiBj ei×ej =
∑
ijk

εijkAiBj ek (e1 · e2×e3)

= (e1 · e2×e3)

∥∥∥∥∥∥
e1 e2 e3

A1 A2 A3

B1 B2 B3

∥∥∥∥∥∥ = (e1 · e2×e3)

∥∥∥∥∥∥
e1 e2 e3

A1 A2 A3

B1 B2 B3

∥∥∥∥∥∥ . (D.164)

The dot-cross product of three vectors is given by

A ·B×C =
∑
ijk

AiBjCk ei · ej×ek =
∑
ijk

εijkA
iBjCk (e1 · e2×e3)

=
∑
ijk

AiBjCk ei · ej×ek =
∑
ijk

εijkAiBjCk (e1 · e2×e3)

= (e1 · e2×e3)

∥∥∥∥∥∥
A1 A2 A3

B1 B2 B3

C1 C2 C3

∥∥∥∥∥∥ = (e1 · e2×e3)

∥∥∥∥∥∥
A1 A2 A3

B1 B2 B3

C1 C2 C3

∥∥∥∥∥∥ . (D.165)

For the simplest situation where the three base vectors e1, e2, e3 are orthog-
onal (e1 · e2 = e2 · e3 = e1 · e3 = 0), the reciprocal vectors point in the same
directions as the original base vectors. Thus, after normalizing the base and
reciprocal vectors they become equal:

ê1 = e1/|e1| = ê1 = e1/|e1| orthogonal
ê2 = e2/|e2| = ê2 = e2/|e2| unit
ê3 = e3/|e3| = ê3 = e3/|e3| vectors. (D.166)

The simplifications of (??)–(??) are given in (D.196)–(D.201) in the section
(D.9) below on orthogonal coordinate systems.

D.8 Curvilinear Coordinate Systems

Consider transformation from the Cartesian coordinate system x = (x, y, z)
to a curvilinear coordinate system labeled by the three independent functions
u1, u2, u3:

x = x(u1, u2, u3) : x = x(u1, u2, u3), y = y(u1, u2, u3), z = z(u1, u2, u3).
(D.167)
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The transformation is invertible if the partial derivatives ∂x/∂ui for i = 1, 2, 3
are continuous and the Jacobian determinant (i.e., ∂x/∂u1 · ∂x/∂u2×∂x/∂u3)
formed from these nine partial derivatives does not vanish in the domain of
interest. The inverse transformation is then given by

ui = ui(x) : u1 = u1(x, y, z), u2 = u2(x, y, z), u3 = u3(x, y, z). (D.168)

In a curvilinear coordinate system there are three coordinate surfaces:

u1(x) = c1 (u2, u3 variable),
u2(x) = c2 (u1, u3 variable),
u3(x) = c3 (u1, u2 variable).

(D.169)

There are also three coordinate curves given by

u2(x) = c2, u3(x) = c3 (u1 variable),
u3(x) = c3, u1(x) = c1 (u2 variable),
u1(x) = c1, u2(x) = c2 (u3 variable).

(D.170)

The direction in which ui increases along a coordinate curve is taken to be the
positive direction for ui. If the curvilinear coordinate curves intersect at right
angles (i.e.,∇ui · ∇uj = 0 except for i = j), then the system is orthogonal. The
familiar Cartesian, cylindrical and spherical coordinate systems are all orthogo-
nal. They are discussed at the end of the next section which covers orthogonal
coordinates.

A nonorthogonal curvilinear coordinate system can be constructed from an
invertible set of functions u1(x), u2(x), u3(x) as follows. A set of base vectors
ei can be defined by

ei =∇ui, i = 1, 2, 3 contravariant base vectors. (D.171)

These so-called contravariant (superscript index) base vectors point in the direc-
tion of the gradient of the curvilinear coordinates ui, and hence in the directions
perpendicular to the ui(x) = ci surfaces. The set of reciprocal base vectors ei
is given by

ei = εijk
ej×ek

e1 · e2×e3
=
εijk
J−1
∇uj×∇uk, covariant base vectors, (D.172)

in which

J−1 ≡∇u1 · ∇u2×∇u3 = e1 · e2×e3 inverse Jacobian (D.173)

is the Jacobian of the “inverse” transformation from the ui curvilinear coordi-
nate system back to the original Cartesian coordinate system.

An alternative form for the reciprocal base vectors can be obtained from the
definition of the derivative of one of the curvilinear coordinates ui(x) in terms
of the gradient: dui = ∇ui · dx = ∇ui ·

∑
j(∂x/∂uj) dxj , which becomes an
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identity if and only if ∇ui · (∂x/∂uj) = δij . Since this last relation is the same
as the defining relation for reciprocal base vectors (ei · ej = δij), it follows that

ei =
∂x
∂ui

, i = 1, 2, 3 covariant base vectors. (D.174)

The so-called covariant (subscript index) base vectors point in the direction
of the local tangent to the ui variable coordinate curve (from the ∂x/∂ui def-
inition), i.e., parallel to the ui coordinate curve. Alternatively, the covariant
base vectors can be thought of as pointing in the direction of the cross product
of contravariant base vectors for the two coordinate surfaces other than the ui

coordinate being considered (from the ∇uj×∇uk definition). That these two
directional definitions coincide follows from the properties of curvilinear sur-
faces and curves. The contravariant base vectors ei can also be defined as the
reciprocal base vectors of covariant base vectors ei:

ei = εijk
ej×ek

e1 · e2×e2
=
εijk

J

∂x
∂uj
× ∂x
∂uk

; i, j, k = permutations of 1, 2, 3

contravariant base vectors
(D.175)

in which
J =

∂x
∂u1
· ∂x
∂u2
× ∂x
∂u3

= e1 · e2×e3 Jacobian (D.176)

is the Jacobian of the transformation from the Cartesian coordinate system to
the curvilinear coordinate system specified by the functions ui.

The geometrical properties of a nonorthogonal curvilinear coordinate system
are characterized by the dot products of the base vectors:

gij ≡ ei · ej =
∂x
∂ui
· ∂x
∂uj

covariant metric elements,

gij ≡ ei · ej =∇ui · ∇uj contravariant metric elements.
(D.177)

These symmetric tensor metric elements can be used to write the covariant
components of a vector in terms of its contravariant components and vice versa:

Ai ≡ A · ei = A · I · ei =
∑
j

(A · ej)(ej · ei) =
∑
j

gij A
j

Ai ≡ A · ei = A · I · ei =
∑
j

(A · ej)(ej · ei) =
∑
j

gijAi.
(D.178)

Similarly, they can also be used to write the covariant base vectors in terms of
the contravariant base vectors and vice versa:

ei =
∑
j

gij ej , ei =
∑
j

gij ei. (D.179)

From the dot product between these relations and their respective reciprocal
base vectors it can be shown that∑

j

gij g
jk =

∑
j

gkjgji = δki . (D.180)
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The determinant of the matrix comprised of the metric coefficients is called
g:

g ≡ ‖gij‖ =
∥∥gij∥∥−1

, (D.181)

in which the second relation follows from interpreting the summation relations
at the end of the preceding paragraph in terms of matrix operations: [gij ][gik]
= [I], which yields [gij ] = [gjk]−1. Since the determinant of the inner product
of two matrices is given by the product of the determinants of the two matrices,

g = ‖gij‖ =
∥∥∥∥ ∂x
∂ui
· ∂x
∂uj

∥∥∥∥ =
∥∥∥∥ ∂x
∂ui

∥∥∥∥∥∥∥∥ ∂x
∂uj

∥∥∥∥ =
(
∂x
∂u1
· ∂x
∂u2
× ∂x
∂u3

)2

= J2.

(D.182)
Thus, the determinant of the metric coefficients is related to the Jacobian and
inverse Jacobian as follows:

J =
√
g = e1 · e2×e3 =

∂x
∂u1
· ∂x
∂u2
× ∂x
∂u3

Jacobian,

J−1 = 1/
√
g = e1 · e2×e3 =∇u1 · ∇u2×∇u3 inverse Jacobian.

(D.183)

The various partial derivatives in space can be worked out in terms of covari-
ant derivatives (∂/∂ui) using the properties of the covariant and contravariant
base vectors for a general, nonorthogonal curvilinear coordinate system as fol-
lows:

∇f =
∑
i

∇ui ∂f
∂ui

=
∑
i

ei
∂f

∂ui
gradient,

(D.184)

∇ ·A = ∇ · (A · I) =∇ ·
∑
i

√
g (A · ei) ei√

g
=
∑
i

ei√
g
· ∇(
√
gAi)

=
∑
i

1√
g

∂

∂ui
(
√
gA · ei) =

∑
i

1
J

∂

∂ui
(J A · ∇ui) divergence,

(D.185)
∇×A =∇×(A · I) =∇×

∑
j

(A · ej)ej =
∑
j

∇Aj×∇uj

=
∑
ij

∂Aj
∂ui
∇ui×∇uj =

∑
ijk

εijk√
g

∂(A · ej)
∂ui

=
1√
g

∥∥∥∥∥∥
e1 e2 e3
∂
∂u1

∂
∂u2

∂
∂u3

A1 A2 A3

∥∥∥∥∥∥ curl,

(D.186)
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∇2f ≡∇ ·∇f =
∑
i

1√
g

∂

∂ui
(
√
g ei ·

∑
j

ej
∂f

∂uj
)

=
∑
ij

1√
g

∂

∂ui
(
√
g gij

∂f

∂uj
) =

∑
ij

1
J

∂

∂ui
(J∇ui · ∇uj ∂f

∂uj
) Laplacian.

(D.187)
Differential line, surface and volume elements can be written in terms of

differentials of the coordinates ui of a general, nonorthogonal curvilinear coor-
dinate system as follows. Total vector differential and line elements are:

dx =
∑
i

∂x
∂ui

dxi =
∑
i

ei dxi

|d`| ≡
√
dx · dx =

√∑
ij gij du

iduj metric of coordinates.
(D.188)

Differential line elements d`(i) along curve ui (duj = duk = 0) for i, j, k =
permutations of 1, 2, 3 are

d`(i) = ei dui =
εijk√
g
∇uj×∇uk dui

|d`(i)| = √ei · ei dui =
√
gii du

i

(D.189)

The differential surface element dS(i) in the ui = ci surface (dui = 0) for i, j, k
= permutations of 1, 2, 3 is

dS(i) ≡ d`(j)×d`(k) =
√
g εijk∇ui dujduk

|dS(i)| =
√
gjjgkk − g2

jk du
jduk =

√
giig dujduk

(D.190)

The differential volume element is

d3x ≡ d`(1) · d`(2)×d`(3) = e1 · (e2×e3) du1du2du3 =
√
g du1du2du3.

(D.191)

D.9 Orthogonal Coordinate Systems

Consider transformation from the Cartesian coordinate system x = (x, y, z)
to an orthogonal curvilinear coordinate system defined by three independent
functions ui = ui(x, y, z) for i = 1, 2, 3. [Here, the superscripts 1,2,3 are not
powers; rather, they represent labels for the three functions. The functions are
labeled in this way to maintain consistency with the general (nonorthogonal)
curvilinear coordinate literature.] The coordinate surfaces are defined by ui =
ci, where ci are constants. The three orthogonal unit vectors that point in
directions locally perpendicular to the coordinate surfaces are

êi ≡∇ui/|∇ui| orthogonal unit vectors. (D.192)
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For the simplest orthogonal coordinate system, the Cartesian coordinate system,
ê1 =∇x = x̂, ê2 =∇y = ŷ, ê3 =∇z = ẑ.

Because of the normalization and assumed orthogonality of these unit vec-
tors,

êi · êj = δij ≡
{

1, for i = j,
0, for i 6= j,

Kronecker delta. (D.193)

The cross products of unit vectors are governed by the right-hand rule which is
embodied in the mathematical relation

êi×êj = εijk êk (D.194)

in which the Levi-Civita symbol εijk is defined by

εijk ≡

 +1, for i, j, k = 1, 2, 3 or 2, 3, 1 or 3, 1, 2 (even permutations)
−1, for i, j, k = 2, 1, 3 or 1, 3, 2 or 3, 2, 1 (odd permutations)

0, for any two indices the same.
(D.195)

A vector A can be represented in terms of its components in the orthogonal
directions (parallel to ∇ui) of the unit vectors êi:

A =
∑
i

Aiêi = A1ê1 +A2ê2 +A3ê3, Ai ≡ A · êi (D.196)

For an orthogonal coordinate system the identity dyad or tensor is

I =
∑
i

êiêi = ê1ê1 + ê2ê2 + ê3ê3 identity tensor. (D.197)

Thus, the vector differential operator becomes

∇ = I · ∇ =
∑
i

êi (êi · ∇) = ê1 (ê1 · ∇) + ê2 (ê2 · ∇) + ê3 (ê3 · ∇)

=
∑
i

∇ui ∂
∂ui

=∇u1 ∂

∂u1
+∇u2 ∂

∂u2
+∇u3 ∂

∂u3
.

(D.198)

Here and below the sum over i is over the three components 1,2,3.
Using the relations for the dot and cross products of the unit vectors êi given

in (D.193) and (D.194) the dot, cross and dot-cross products of vectors become

A ·B =
∑
i

AiBi = A1B1 +A2B2 +A3B3, (D.199)

A×B =
∑
ij

AiBj êi×êj =
∑
ijk

εijk AiBj êk =

∥∥∥∥∥∥
ê1 ê2 ê3

A1 A2 A3

B1 B2 B3

∥∥∥∥∥∥
= ê1(A2B3 −A3B2) + ê2(A3B1 −A1B2) + ê3(A1B2 −A2B1). (D.200)

A ·B×C =
∑
ijk

εijk AiBjCk =

∥∥∥∥∥∥
A1 A2 A3

B1 B2 B3

C1 C2 C3

∥∥∥∥∥∥ . (D.201)
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The differential line element in the ith direction is given by

d`(i) = êi hi dui, with hi ≡ 1/|∇ui|, differential line element. (D.202)

Thus, the differential surface vector for the ui = ci surface, which is defined by
dS(i) = d`(j)×d`(k), becomes

dS(i) = êi hjhk dujduk, for i 6= j 6= k, differential surface area. (D.203)

Since the differential volume element is d3x = d`(i) · dS(i) = d`(1) · d`(2)×d`(3)
and the Jacobian of the transformation is given by J = 1/(∇u1 · ∇u2×∇u3)
= h1h2h3,

d3x = h1h2h3 du
1du2du3, differential volume. (D.204)

For orthogonal coordinate systems the various partial derivatives in space
are

∇f =
∑
i

êi
hi

∂f

∂ui
=
∑
i

êi (êi · ∇) f, (D.205)

∇ ·A =
∑
i

1
J

∂

∂ui

(
J

hi
A · êi

)
=
∑
i

1
h1h2h3

∂

∂ui

(
h1h2h3

hi
A · êi

)
, (D.206)

∇×A =
∑
ijk

εijkhkêk
J

∂

∂ui
(hjA · êj) =

∑
ijk

εijkhkêk
h1h2h3

∂

∂ui
(hjA · êj), (D.207)

∇2f =
∑
i

1
J

∂

∂ui

(
J

h2
i

∂f

∂ui

)
=
∑
i

1
h1h2h3

∂

∂ui

(
h1h2h3

h2
i

∂f

∂ui

)
. (D.208)

The three most common orthogonal coordinate systems are the Cartesian,
cylindrical, and spherical coordinate systems. Their coordinate surfaces and
unit vectors are shown in Fig. D.3. They will be defined in this book by

Cartesian : ui = (x, y, z)
hx = 1, hy = 1, hz = 1 =⇒ J = 1; (D.209)

cylindrical : ui = (r, θ, z)

r ≡
√
x2 + y2, θ ≡ arctan(y/x), z ≡ z,

x = r cos θ, y = r sin θ, z = z,

hr = 1, hθ = r, hz = 1 =⇒ J = r; (D.210)

spherical : ui = (r, ϑ, ϕ)

r ≡
√
x2 + y2 + z2, ϑ ≡ arctan(

√
x2 + y2/r), ϕ ≡ arctan(y/x),

x = r sinϑ cosϕ, y = r sinϑ sinϕ, z = r cosϑ,
hr = 1, hθ = r, hϕ = r sinϑ =⇒ J = r2 sinϑ. (D.211)
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Figure D.3: Orthogonal unit vectors and constant coordinate surfaces for the
three most common orthogonal coordinate systems.
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Note that with these definitions the cylindrical angle θ is the same as the az-
imuthal (longitudinal) spherical angle ϕ, but that the radial coordinate r is
different in the cylindrical and spherical coordinate systems. The spherical an-
gle ϑ is a latitude angle — see Fig. D.3. Explicit forms for the various partial
derivatives in space, (D.205) – (D.208), are given in Appendix Z.
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